How "Quantum" is the D-Wave Machine?

Recently there has been intense interest in claims about the performance of the D-Wave machine. In this paper, we outline a simple classical model, and show that it achieves excellent correlation with published input-output behavior of the D-Wave One machine on 108 qubits. While raising questions about "how quantum" the D-Wave machine is, the new model also provides additional algorithmic insights into the nature of the native computational problem solved by the D-Wave machine.

[1]  Daniel A. Lidar,et al.  Consistency tests of classical and quantum models for a quantum annealer , 2014, 1403.4228.

[2]  Umesh Vazirani,et al.  Comment on "Distinguishing Classical and Quantum Models for the D-Wave Device" , 2014, 1404.6499.

[3]  Daniel A. Lidar,et al.  Distinguishing Classical and Quantum Models for the D-Wave Device , 2014 .

[4]  Daniel A. Lidar,et al.  Defining and detecting quantum speedup , 2014, Science.

[5]  Umesh V. Vazirani,et al.  Robust device independent quantum key distribution , 2014, ITCS.

[6]  J. Smolin,et al.  Classical signature of quantum annealing , 2013, Front. Phys..

[7]  Daniel A. Lidar,et al.  Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.

[8]  E. Kashefi,et al.  Experimental verification of quantum computation , 2013, Nature Physics.

[9]  Rishi Saket,et al.  A PTAS for the Classical Ising Spin Glass Problem on the Chimera Graph Structure , 2013, ArXiv.

[10]  Daniel A. Lidar,et al.  Comment on: "Classical signature of quantum annealing" , 2013, 1305.5837.

[11]  M. W. Johnson,et al.  Thermally assisted quantum annealing of a 16-qubit problem , 2013, Nature Communications.

[12]  Nicola Jones Google and NASA snap up quantum computer , 2013, Nature.

[13]  Cong Wang,et al.  Experimental evaluation of an adiabiatic quantum system for combinatorial optimization , 2013, CF '13.

[14]  Umesh V. Vazirani,et al.  Classical command of quantum systems , 2013, Nature.

[15]  Daniel A. Lidar,et al.  Experimental signature of programmable quantum annealing , 2012, Nature Communications.

[16]  E. Kashefi,et al.  Unconditionally verifiable blind computation , 2012 .

[17]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design , 2010, Quantum Inf. Process..

[18]  Jérémie Roland,et al.  Anderson localization makes adiabatic quantum optimization fail , 2009, Proceedings of the National Academy of Sciences.

[19]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[20]  Elad Eban,et al.  Interactive Proofs For Quantum Computations , 2017, 1704.04487.

[21]  Elham Kashefi,et al.  Universal Blind Quantum Computation , 2008, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[22]  Jérémie Roland,et al.  Anderson localization casts clouds over adiabatic quantum optimization , 2009, ArXiv.

[23]  Adrian Kent,et al.  No signaling and quantum key distribution. , 2004, Physical review letters.

[24]  Ben Reichardt,et al.  The quantum adiabatic optimization algorithm and local minima , 2004, STOC '04.

[25]  Andrew Chi-Chih Yao,et al.  Interactive Proofs for Quantum Computation , 2003, ISAAC.

[26]  Umesh V. Vazirani,et al.  How powerful is adiabatic quantum computation? , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[27]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[28]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[29]  V. Rich Personal communication , 1989, Nature.

[30]  H. Schirmer Fixed point sets of homotopies. , 1983 .