An interactive desirability function method to multiresponse optimization

Multiresponse optimization problems often involve incommensurate and conflicting responses. To obtain a satisfactory compromise in such a case, a decision maker (DM)'s preference information on the tradeoffs among the responses should be incorporated into the problem. This paper proposes an interactive method based on the desirability function approach to facilitate the preference articulation process. The proposed method allows the DM to adjust any of the preference parameters, namely, the shape, bound, and target of a desirability function in a single, integrated framework. The proposed method would be highly effective in generating a compromise solution that is faithful to the DM's preference structure.

[1]  A. I. Khuri 12 Multiresponse surface methodology , 1996, Design and analysis of experiments.

[2]  Arthur M. Geoffrion,et al.  An Interactive Approach for Multi-Criterion Optimization, with an Application to the Operation of an Academic Department , 1972 .

[3]  R. Benayoun,et al.  Linear programming with multiple objective functions: Step method (stem) , 1971, Math. Program..

[4]  Pekka Korhonen,et al.  A Visual Interactive Method for Solving the Multiple-Criteria Problem , 1986 .

[5]  Robert D. Plante,et al.  Interactive Multicriteria Optimization for Multiple-Response Product and Process Design , 2003, Manuf. Serv. Oper. Manag..

[6]  Behrokh Khoshnevis,et al.  Development of a Rapid Prototyping System using Response Surface Methodology , 2006, Qual. Reliab. Eng. Int..

[7]  Young-Hyun Ko,et al.  A New Loss Function-Based Method for Multiresponse Optimization , 2005 .

[8]  P. Siarry,et al.  Multiobjective Optimization: Principles and Case Studies , 2004 .

[9]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[10]  R. H. Myers,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[11]  G. Geoffrey Vining,et al.  A Compromise Approach to Multiresponse Optimization , 1998 .

[12]  In-Jun Jeong,et al.  D-STEM: a modified step method with desirability function concept , 2005, Comput. Oper. Res..

[13]  John H. Sheesley,et al.  Quality Engineering in Production Systems , 1988 .

[14]  C George,et al.  A Balancing Act: Optimizing a Product's Properties , 1994 .

[15]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[16]  Gerald W. Evans,et al.  Multicriteria design of manufacturing systems through simulation optimization , 1994 .

[17]  Kwang-Jae Kim,et al.  Interactive Desirability Function Approach to Multi-Response Surface Optimization , 2003 .

[18]  G. Derringer,et al.  Simultaneous Optimization of Several Response Variables , 1980 .

[19]  C. Hwang,et al.  Fuzzy Multiple Objective Decision Making: Methods And Applications , 1996 .

[20]  Joseph J. Pignatiello,et al.  STRATEGIES FOR ROBUST MULTIRESPONSE QUALITY ENGINEERING , 1993 .

[21]  Pekka Korhonen,et al.  Multiple criteria decision support - A review , 1992 .

[22]  Saad T. Bakir,et al.  Tolerance Design: A Handbook for Developing Optimal Specifications , 1996 .

[23]  BenayounR.,et al.  Linear programming with multiple objective functions , 1971 .

[24]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[25]  Kwang-Jae Kim,et al.  Simultaneous optimization of mechanical properties of steel by maximizing exponential desirability functions , 2000 .

[26]  Dennis K. J. Lin,et al.  Optimization of multiple responses considering both location and dispersion effects , 2006, Eur. J. Oper. Res..

[27]  Kwang-Jae Kim,et al.  Optimizing multi-response surface problems: How to use multi-objective optimization techniques , 2005 .

[28]  Douglas C. Montgomery,et al.  Multiple response surface methods in computer simulation , 1977 .

[29]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .