Tuning the chemical activity through PtAu nanoalloying: a first principles study

The electronic structure and adsorption properties of 1.5 nm sized Pt, Au, and PtAu nanoclusters are studied by density functional theory. We explain the recent experimental finding that 20% Au content in PtAu nanoparticles is optimal to induce a dramatically different catalytic behavior. Our results show that the d-band center together with the density of states at the Fermi energy can be used as an indicator of the chemical activity of PtAu nanoclusters. The most favorable adsorption sites on the cluster surfaces as a function of the Pt/Au ratio are identified using atomic H as a probe.

[1]  Jin Luo,et al.  Pt-Au alloying at the nanoscale. , 2012, Nano letters.

[2]  Bin Fang,et al.  Gold-platinum nanoparticles: alloying and phase segregation , 2011 .

[3]  Michael F Toney,et al.  Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. , 2010, Nature chemistry.

[4]  A S Bondarenko,et al.  Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. , 2009, Nature chemistry.

[5]  M. Arenz,et al.  Adsorbate-induced surface segregation for core-shell nanocatalysts. , 2009, Angewandte Chemie.

[6]  M. Gruner Antiferromagnetism and segregation in cuboctahedral FePt nanoparticles , 2008 .

[7]  M. Ballauff,et al.  Stable Bimetallic Gold–Platinum Nanoparticles Immobilized on Spherical Polyelectrolyte Brushes: Synthesis, Characterization, and Application for the Oxidation of Alcohols , 2008 .

[8]  M. Farle,et al.  Multiply twinned morphologies of FePt and CoPt nanoparticles. , 2008, Physical review letters.

[9]  Nathan T. Hahn,et al.  Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt-Cu-Co nanoparticles. , 2007, Angewandte Chemie.

[10]  G. Watson,et al.  Hydrogen adsorption and diffusion on Pt {111} and PtSn {111} , 2006 .

[11]  Y. Hirayama,et al.  Effects of inversion asymmetry on electron-nuclear spin coupling in semiconductor heterostructures: possible role of spin-orbit interactions. , 2005, Physical review letters.

[12]  Junliang Zhang,et al.  Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. , 2005, Angewandte Chemie.

[13]  F. Matthias Bickelhaupt,et al.  Voronoi deformation density (VDD) charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis , 2004, J. Comput. Chem..

[14]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[15]  Bjørk Hammer,et al.  Structure sensitivity in adsorption: CO interaction with stepped and reconstructed Pt surfaces , 1997 .

[16]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[17]  Jens K. Nørskov,et al.  Electronic factors determining the reactivity of metal surfaces , 1995 .

[18]  R. A. Santen,et al.  Concepts in Theoretical Heterogeneous Catalytic Reactivity , 1995 .

[19]  J. Nørskov,et al.  Why gold is the noblest of all the metals , 1995, Nature.

[20]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.