Changing-regime volatility: a fractionally integrated SETAR model

This article presents a 2-regime SETAR model with different long-memory processes in both regimes. We briefly present the memory properties of this model and propose an estimation method. Such a process is applied to the absolute and squared returns of five stock indices. A comparison to simple ARFIMA models is made using some forecastibility criteria. Our empirical results suggest that our model offers an interesting alternative competing framework to describe the persistent dynamics in modelling the returns.

[1]  H. Tong,et al.  Threshold Autoregression, Limit Cycles and Cyclical Data , 1980 .

[2]  C. Granger Long memory relationships and the aggregation of dynamic models , 1980 .

[3]  J. Geweke,et al.  THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS , 1983 .

[4]  Stephen L Taylor,et al.  Modelling Financial Time Series , 1987 .

[5]  Ruey S. Tsay,et al.  Testing and Modeling Threshold Autoregressive Processes , 1989 .

[6]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[7]  James D. Hamilton,et al.  Autoregressive conditional heteroskedasticity and changes in regime , 1994 .

[8]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[9]  Bonnie K. Ray,et al.  ESTIMATION OF THE MEMORY PARAMETER FOR NONSTATIONARY OR NONINVERTIBLE FRACTIONALLY INTEGRATED PROCESSES , 1995 .

[10]  Uwe Hassler,et al.  Long Memory in Inflation Rates: International Evidence , 1995 .

[11]  Chang-Jin Kim,et al.  Transient fads and the crash of ′87 , 1996 .

[12]  Ignacio N. Lobato,et al.  Real and Spurious Long-Memory Properties of Stock-Market Data , 1996 .

[13]  B. Hansen,et al.  Inference in TAR Models , 1997 .

[14]  Mike K. P. So,et al.  A Stochastic Volatility Model With Markov Switching , 1998 .

[15]  M. Marchesi,et al.  VOLATILITY CLUSTERING IN FINANCIAL MARKETS: A MICROSIMULATION OF INTERACTING AGENTS , 1998 .

[16]  Rohit S. Deo,et al.  The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series , 1998 .

[17]  C. Velasco Gaussian Semiparametric Estimation of Non‐stationary Time Series , 1999 .

[18]  É. Moulines,et al.  Log-Periodogram Regression Of Time Series With Long Range Dependence , 1999 .

[19]  George Tauchen,et al.  Using Daily Range Data to Calibrate Volatility Diffusions and Extract the Forward Integrated Variance , 1999 .

[20]  A. Gallant,et al.  Using Daily Range Data to Calibrate Volatility Diffusions and Extract the Forward Integrated Variance , 1999, Review of Economics and Statistics.

[21]  Ignacio N. Lobato,et al.  Long Memory in Stock-Market Trading Volume , 2000 .

[22]  B. Hansen Sample Splitting and Threshold Estimation , 2000 .

[23]  M. Marchesi,et al.  VOLATILITY CLUSTERING IN FINANCIAL MARKETS: A MICROSIMULATION OF INTERACTING AGENTS , 2000 .

[24]  Gilles Teyssière,et al.  Microeconomic Models for Long Memory in the Volatility of Financial Time Series , 2001 .

[25]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[26]  Florian Wagener,et al.  Adaptive Beliefs and the volatility of asset prices , 2001 .

[27]  L. Gil‐Alana Estimation of Fractionally ARIMA Models for the UK Unemployment , 2001 .

[28]  Estimation of fractionally ARIMA models for the UK unemployment , 2001 .

[29]  Thomas Lux,et al.  A minimal noise trader model with realistic time series , 2002 .

[30]  Philip Hans Franses,et al.  A nonlinear long memory model, with an application to US unemployment ☆ , 2002 .

[31]  A. Beltratti,et al.  The Effects of the Introduction of the Euro on the Volatility of European Stock Markets , 2002 .

[32]  Berlin Wu,et al.  Using genetic algorithms to parameters (d,r) estimation for threshold autoregressive models , 2002 .

[33]  G. Iori A Microsimulation of Traders Activity in the Stock Market: The Role of Heterogeneity, Agents' Interactions and Trade Frictions , 2002 .

[34]  Jerry Coakley,et al.  Numerical Issues in Threshold Autoregressive Modeling of Time Series , 2003 .

[35]  Cathy W. S. Chen,et al.  Subset threshold autoregression , 2003 .

[36]  L. Gil‐Alana Testing of I(d) processes in the real output , 2004 .

[37]  Andrea Beltratti,et al.  Structural Change and Long Range Dependence in Volatility of Exchange Rates: Either, Neither or Both? , 2004 .

[38]  Dominique Guegan,et al.  Long-memory dynamics in a SETAR model – applications to stock markets , 2005 .

[39]  D. Guégan,et al.  Modelling squared returns using a SETAR model with long-memory dynamics , 2005 .

[40]  E. Ghysels,et al.  Why Do Absolute Returns Predict Volatility So Well , 2006 .

[41]  Andrea Beltratti,et al.  Breaks and persistency: macroeconomic causes of stock market volatility , 2006 .

[42]  P. Manimaran,et al.  Modelling Financial Time Series , 2006 .

[43]  Norman R. Swanson,et al.  An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series , 2006 .

[44]  L. Gil‐Alana,et al.  Nonlinearities and Fractional Integration in the US Unemployment Rate , 2007 .

[45]  Pedro L. Valls Pereira,et al.  How Persistent is Stock Return Volatility? An Answer with Markov Regime Switching Stochastic Volatility Models , 2007 .

[46]  Johann Scharler,et al.  Stock Market Volatility and the Business Cycle , 2010 .