Changing-regime volatility: a fractionally integrated SETAR model
暂无分享,去创建一个
Dominique Guegan | Anne Peguin-Feissolle | Gilles Dufrénot | D. Guégan | G. Dufrénot | Anne Péguin-Feissolle
[1] H. Tong,et al. Threshold Autoregression, Limit Cycles and Cyclical Data , 1980 .
[2] C. Granger. Long memory relationships and the aggregation of dynamic models , 1980 .
[3] J. Geweke,et al. THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS , 1983 .
[4] Stephen L Taylor,et al. Modelling Financial Time Series , 1987 .
[5] Ruey S. Tsay,et al. Testing and Modeling Threshold Autoregressive Processes , 1989 .
[6] C. Granger,et al. A long memory property of stock market returns and a new model , 1993 .
[7] James D. Hamilton,et al. Autoregressive conditional heteroskedasticity and changes in regime , 1994 .
[8] F. Diebold,et al. Comparing Predictive Accuracy , 1994, Business Cycles.
[9] Bonnie K. Ray,et al. ESTIMATION OF THE MEMORY PARAMETER FOR NONSTATIONARY OR NONINVERTIBLE FRACTIONALLY INTEGRATED PROCESSES , 1995 .
[10] Uwe Hassler,et al. Long Memory in Inflation Rates: International Evidence , 1995 .
[11] Chang-Jin Kim,et al. Transient fads and the crash of ′87 , 1996 .
[12] Ignacio N. Lobato,et al. Real and Spurious Long-Memory Properties of Stock-Market Data , 1996 .
[13] B. Hansen,et al. Inference in TAR Models , 1997 .
[14] Mike K. P. So,et al. A Stochastic Volatility Model With Markov Switching , 1998 .
[15] M. Marchesi,et al. VOLATILITY CLUSTERING IN FINANCIAL MARKETS: A MICROSIMULATION OF INTERACTING AGENTS , 1998 .
[16] Rohit S. Deo,et al. The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series , 1998 .
[17] C. Velasco. Gaussian Semiparametric Estimation of Non‐stationary Time Series , 1999 .
[18] É. Moulines,et al. Log-Periodogram Regression Of Time Series With Long Range Dependence , 1999 .
[19] George Tauchen,et al. Using Daily Range Data to Calibrate Volatility Diffusions and Extract the Forward Integrated Variance , 1999 .
[20] A. Gallant,et al. Using Daily Range Data to Calibrate Volatility Diffusions and Extract the Forward Integrated Variance , 1999, Review of Economics and Statistics.
[21] Ignacio N. Lobato,et al. Long Memory in Stock-Market Trading Volume , 2000 .
[22] B. Hansen. Sample Splitting and Threshold Estimation , 2000 .
[23] M. Marchesi,et al. VOLATILITY CLUSTERING IN FINANCIAL MARKETS: A MICROSIMULATION OF INTERACTING AGENTS , 2000 .
[24] Gilles Teyssière,et al. Microeconomic Models for Long Memory in the Volatility of Financial Time Series , 2001 .
[25] Francis X. Diebold,et al. Modeling and Forecasting Realized Volatility , 2001 .
[26] Florian Wagener,et al. Adaptive Beliefs and the volatility of asset prices , 2001 .
[27] L. Gil‐Alana. Estimation of Fractionally ARIMA Models for the UK Unemployment , 2001 .
[28] Estimation of fractionally ARIMA models for the UK unemployment , 2001 .
[29] Thomas Lux,et al. A minimal noise trader model with realistic time series , 2002 .
[30] Philip Hans Franses,et al. A nonlinear long memory model, with an application to US unemployment ☆ , 2002 .
[31] A. Beltratti,et al. The Effects of the Introduction of the Euro on the Volatility of European Stock Markets , 2002 .
[32] Berlin Wu,et al. Using genetic algorithms to parameters (d,r) estimation for threshold autoregressive models , 2002 .
[33] G. Iori. A Microsimulation of Traders Activity in the Stock Market: The Role of Heterogeneity, Agents' Interactions and Trade Frictions , 2002 .
[34] Jerry Coakley,et al. Numerical Issues in Threshold Autoregressive Modeling of Time Series , 2003 .
[35] Cathy W. S. Chen,et al. Subset threshold autoregression , 2003 .
[36] L. Gil‐Alana. Testing of I(d) processes in the real output , 2004 .
[37] Andrea Beltratti,et al. Structural Change and Long Range Dependence in Volatility of Exchange Rates: Either, Neither or Both? , 2004 .
[38] Dominique Guegan,et al. Long-memory dynamics in a SETAR model – applications to stock markets , 2005 .
[39] D. Guégan,et al. Modelling squared returns using a SETAR model with long-memory dynamics , 2005 .
[40] E. Ghysels,et al. Why Do Absolute Returns Predict Volatility So Well , 2006 .
[41] Andrea Beltratti,et al. Breaks and persistency: macroeconomic causes of stock market volatility , 2006 .
[42] P. Manimaran,et al. Modelling Financial Time Series , 2006 .
[43] Norman R. Swanson,et al. An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series , 2006 .
[44] L. Gil‐Alana,et al. Nonlinearities and Fractional Integration in the US Unemployment Rate , 2007 .
[45] Pedro L. Valls Pereira,et al. How Persistent is Stock Return Volatility? An Answer with Markov Regime Switching Stochastic Volatility Models , 2007 .
[46] Johann Scharler,et al. Stock Market Volatility and the Business Cycle , 2010 .