Shear band localization via local J2 continuum damage mechanics

This paper describes a novel formulation for the solution of problems involving shear band localization using a local isotropic J2 continuum damage model and mixed linear simplex (triangles and tetrahedra). Stabilization methods are used to ensure existence and uniqueness of the solution, attaining global and local stability of the corresponding discrete finite element formulation. Consistent residual viscosity is used to enhance robustness and convergence of the formulation. Implementation and computational aspects are also discussed. A simple isotropic local J2 damage constitutive model is considered, either with linear or exponential softening. The softening modulus is regularized according to the material mode II fracture energy and the element size. Numerical examples show that the formulation derived is fully stable and remarkably robust, totally free of volumetric locking and spurious oscillations of the pressure. As a consequence, the results obtained do not suffer from spurious mesh-size or mesh-bias dependence, comparing very favourably with those obtained with the ill-posed standard approaches. � 2004 Elsevier B.V. All rights reserved.

[1]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: II. Beyond SUPG , 1986 .

[2]  Miguel Cervera,et al.  Softening, localization and stabilization: capture of discontinuous solutions in J2 plasticity , 2004 .

[3]  Volker Mannl,et al.  Advances in Continuum Mechanics , 1991 .

[4]  J. Bonet,et al.  Stability and comparison of different linear tetrahedral formulations for nearly incompressible explicit dynamic applications , 2001 .

[5]  Milan Jirásek,et al.  Nonlocal models for damage and fracture: Comparison of approaches , 1998 .

[6]  J. Pamin,et al.  Gradient-dependent plasticity in numerical simulation of localization phenomena , 1994 .

[7]  Robert L. Taylor,et al.  A mixed-enhanced formulation tetrahedral finite elements , 2000 .

[8]  R. Borst Fracture in quasi-brittle materials: a review of continuum damage-based approaches , 2002 .

[9]  R. Codina Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods , 2000 .

[10]  Vieira Chaves,et al.  A There Dimensional Setting for Strong Discontinuities Modelling in Failure Mechanics , 2003 .

[11]  Rhj Ron Peerlings,et al.  Gradient‐enhanced damage modelling of concrete fracture , 1998 .

[12]  Z. Bažant,et al.  Crack band theory for fracture of concrete , 1983 .

[13]  Miguel Cervera,et al.  A stabilized formulation for incompressible plasticity using linear triangles and tetrahedra , 2004 .

[14]  K. Willam,et al.  Localization within the Framework of Micropolar Elasto-Plasticity , 1991 .

[15]  J. Oliver A consistent characteristic length for smeared cracking models , 1989 .

[16]  J. Oliver On the discrete constitutive models induced by strong discontinuity kinematics and continuum constitutive equations , 2000 .

[17]  J. C. Simo,et al.  An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids , 1993 .

[18]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[19]  Jean-Louis Chaboche,et al.  ASPECT PHENOMENOLOGIQUE DE LA RUPTURE PAR ENDOMMAGEMENT , 1978 .

[20]  René de Borst,et al.  Gradient-dependent plasticity: formulation and algorithmic aspects , 1992 .

[21]  Clark R. Dohrmann,et al.  Uniform Strain Elements for Three-Node Triangular and Four-Node Tetrahedral Meshes , 1999 .

[22]  A. Needleman Material rate dependence and mesh sensitivity in localization problems , 1988 .

[23]  E. Oñate,et al.  Finite calculus formulation for incompressible solids using linear triangles and tetrahedra , 2004 .

[24]  Nenad Bićanić,et al.  Some computational aspects of tensile strain localization modelling in concrete , 1990 .

[25]  O. C. Zienkiewicz,et al.  Localization problems in plasticity using finite elements with adaptive remeshing , 1995 .

[26]  E. Aifantis On the Microstructural Origin of Certain Inelastic Models , 1984 .

[27]  C. A. Saracibar,et al.  A stabilized formulation for incompressible elasticity using linear displacement and pressure interpolations , 2002 .

[28]  Ioannis Vardoulakis,et al.  A gradient flow theory of plasticity for granular materials , 1991 .

[29]  M. Shephard,et al.  A stabilized mixed finite element method for finite elasticity.: Formulation for linear displacement and pressure interpolation , 1999 .

[30]  E. A. S. Neto,et al.  F‐bar‐based linear triangles and tetrahedra for finite strain analysis of nearly incompressible solids. Part I: formulation and benchmarking , 2005 .

[31]  Miguel Cervera,et al.  A RATE-DEPENDENT ISOTROPIC DAMAGE MODEL FOR THE SEISMIC ANALYSIS OF CONCRETE DAMS , 1996 .

[32]  O. C. Zienkiewicz,et al.  Softening, localisation and adaptive remeshing. Capture of discontinuous solutions , 1995 .

[33]  Oubay Hassan,et al.  An averaged nodal deformation gradient linear tetrahedral element for large strain explicit dynamic applications , 2001 .

[34]  Gilles Pijaudier-Cabot,et al.  Isotropic and anisotropic descriptions of damage in concrete structures , 1999 .

[35]  J. Bonet,et al.  A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications , 1998 .

[36]  Gilles Pijaudier-Cabot,et al.  Measurement of Characteristic Length of Nonlocal Continuum , 1989 .

[37]  R. Borst SIMULATION OF STRAIN LOCALIZATION: A REAPPRAISAL OF THE COSSERAT CONTINUUM , 1991 .

[38]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[39]  J. Ju,et al.  On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects , 1989 .

[40]  J. Oliyer Continuum modelling of strong discontinuities in solid mechanics using damage models , 1995 .

[41]  Rui Faria,et al.  Seismic evaluation of concrete dams via continuum damage models , 1995 .

[42]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[43]  René de Borst,et al.  Some recent issues in computational failure mechanics , 2001 .

[44]  C. A. Saracibar,et al.  Mixed linear/linear simplicial elements for incompressible elasticity and plasticity , 2003 .

[45]  J. C. Simo,et al.  Strain- and stress-based continuum damage models—I. Formulation , 1987 .

[46]  J. C. Simo,et al.  Strain- and stress-based continuum damage models—I. Formulation , 1989 .

[47]  Zhen Chen,et al.  One-Dimensional Softening With Localization , 1986 .

[48]  Esteban Samaniego,et al.  A study on nite elements for capturing strong discontinuities , 2020 .

[49]  E. T. S. Enginyers de Camins,et al.  Strong discontinuities and continuum plasticity models : the strong discontinuity approach , 1999 .

[50]  O. C. Zienkiewicz,et al.  Triangles and tetrahedra in explicit dynamic codes for solids , 1998 .

[51]  Surendra P. Shah,et al.  Effect of Length on Compressive Strain Softening of Concrete , 1997 .