Cryptanalysis of a sessional blind signature based on quantum cryptography

A digital signature is a mathematical scheme for demonstrating the authenticity of a digital message or document. A blind signature is a form of digital signature in which the content of a message is disguised (blinded) before it is signed to protect the privacy of the message from the signatory. For signing quantum messages, some quantum blind signature protocols have been proposed. Recently, Khodambashi et al. (Quantum Inf Process 13:121, 2014) proposed a sessional blind signature based on quantum cryptography. It was claimed that these protocol could guarantee unconditional security. However, after our analysis, we find that the signature protocol will cause the key information leakage in the view of information theory. Taking advantage of loophole, the message sender can succeed in forging the signature without the knowledge of the whole exact key between the verifier and him. To conquer this shortcoming, we construct an improved protocol based on it and the new protocol can resist the key information leakage attacks.

[1]  Adan Cabello Reply to `Comment on ``Quantum key distribution without alternative measurements''' , 2000 .

[2]  M. Teich,et al.  Decoherence-free subspaces in quantum key distribution. , 2003, Physical review letters.

[3]  Ying Guo,et al.  Batch proxy quantum blind signature scheme , 2011, Science China Information Sciences.

[4]  Fei Gao,et al.  A simple participant attack on the brádler-dušek protocol , 2007, Quantum Inf. Comput..

[5]  H. Weinfurter,et al.  Information leakage via side channels in freespace BB84 quantum cryptography , 2009 .

[6]  Antoni Wójcik Eavesdropping on the "ping-pong" quantum communication protocol. , 2003, Physical review letters.

[7]  Wei Huang,et al.  Three-particle QKD protocol against a collective noise , 2011 .

[8]  Antoni Wojcik,et al.  Comment on 'Quantum dense key distribution' , 2005 .

[9]  Li-Hua Gong,et al.  Secure Quantum Dialogue Protocol Based on W States Without Information Leakage , 2013 .

[10]  Moon Ho Lee,et al.  Multiparty Quantum Group Signature Scheme with Quantum Parallel Computation , 2011, 2011IEEE 10th International Conference on Trust, Security and Privacy in Computing and Communications.

[11]  Daowen Qiu,et al.  Security analysis and improvements of arbitrated quantum signature schemes , 2010 .

[12]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[13]  Wen Qiao-Yan,et al.  Cryptanalysis of the arbitrated quantum signature protocols , 2011 .

[14]  Yuan Tian,et al.  A weak blind signature scheme based on quantum cryptography , 2009 .

[15]  Tian-Yu Ye,et al.  Quantum dialogue without information leakage based on the entanglement swapping between any two Bell states and the shared secret Bell state , 2022, 2205.01877.

[16]  Guihua Zeng,et al.  Arbitrated quantum-signature scheme , 2001, quant-ph/0109007.

[17]  Xiu-Bo Chen,et al.  Re-examining the security of blind quantum signature protocols , 2012 .

[18]  Xiao-jun Wen,et al.  An inter-bank E-payment protocol based on quantum proxy blind signature , 2013, Quantum Inf. Process..

[19]  Qiao-Yan Wen,et al.  Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication , 2008 .

[20]  N. Gisin,et al.  Trojan-horse attacks on quantum-key-distribution systems (6 pages) , 2005, quant-ph/0507063.

[21]  Wang Tian-yin,et al.  Fair quantum blind signatures , 2010 .

[22]  Ying Guo,et al.  A (t,n)-Threshold Scheme of Multi-party Quantum Group Signature with Irregular Quantum Fourier Transform , 2012 .

[23]  Ali Zakerolhosseini,et al.  A sessional blind signature based on quantum cryptography , 2014, Quantum Inf. Process..

[24]  Hwayean Lee,et al.  Arbitrated quantum signature scheme with message recovery , 2004 .

[25]  Wen Qiao-Yan,et al.  A Special Eavesdropping on One-Sender Versus N-Receiver QSDC Protocol , 2008 .

[26]  Zeng Gui-hua,et al.  Signature Scheme Based on Quantum Cryptography , 2001 .

[27]  Wen Xiao-jun,et al.  An E-payment system based on quantum group signature , 2010 .

[28]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[29]  Qiao-Yan Wen,et al.  Comment on "experimental demonstration of a quantum protocol for Byzantine agreement and liar detection". , 2008, Physical review letters.

[30]  Qiaoyan Wen,et al.  Improving the security of multiparty quantum secret sharing against an attack with a fake signal , 2006 .

[31]  A. M. Colla,et al.  Quantum dense key distribution , 2004 .

[32]  Moon Ho Lee,et al.  A multiparty quantum proxy group signature scheme for the entangled-state message with quantum Fourier transform , 2011, Quantum Inf. Process..

[33]  Fen-Zhuo Guo,et al.  Consistency of shared reference frames should be reexamined , 2008 .

[34]  Wen Qiao-Yan,et al.  Fault tolerant quantum secure direct communication with quantum encryption against collective noise , 2012 .

[35]  Hao Liang,et al.  Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution , 2010 .

[36]  Xunru Yin,et al.  A Blind Quantum Signature Scheme with χ-type Entangled States , 2012 .

[37]  Su-Juan Qin,et al.  Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state , 2010 .

[38]  Xiao-Qiu Cai,et al.  Cryptanalysis of an inter-bank E-payment protocol based on quantum proxy blind signature , 2013, Quantum Inf. Process..

[39]  Dowon Hong,et al.  Security problem on arbitrated quantum signature schemes , 2011 .

[40]  Wen Qiao-Yan,et al.  Quantum blind signature based on Two-State Vector Formalism , 2010 .

[41]  Adan Cabello Quantum key distribution without alternative measurements , 2000 .

[42]  Huijuan Zuo,et al.  Cryptanalysis and Improvement of a Multi-User Quantum Communication Network Using χ-Type Entangled States , 2012, International Journal of Theoretical Physics.

[43]  Qiaoyan Wen,et al.  Comment on: “Quantum exam” [Phys. Lett. A 350 (2006) 174] , 2007 .

[44]  Hoi-Kwong Lo,et al.  Some attacks on quantum-based cryptographic protocols , 2005, Quantum Inf. Comput..

[45]  Wen Qiao-Yan,et al.  Teleportation attack on the QSDC protocol with a random basis and order , 2008 .

[46]  Christian Kurtsiefer,et al.  Experimental demonstration of a quantum protocol for byzantine agreement and liar detection. , 2007, Physical review letters.

[47]  Nguyen Ba An Quantum exam , 2006 .

[48]  Yixian Yang,et al.  Information leakage in three-party simultaneous quantum secure direct communication with EPR pairs , 2011 .

[49]  Guang-Can Guo,et al.  Comment on “Quantum key distribution without alternative measurements” [Phys. Rev. A 61 , 052312 (2000)] , 2001 .

[50]  Wen Xiaojun,et al.  An E-payment System Based on Quantum Blind and Group Signature , 2010, 2010 Second International Symposium on Data, Privacy, and E-Commerce.

[51]  Fuguo Deng,et al.  Improving the security of multiparty quantum secret sharing against Trojan horse attack , 2005, quant-ph/0506194.

[52]  N. Lutkenhaus,et al.  Comment on ``Arbitrated quantum-signature scheme'' , 2008, 0806.0854.

[53]  Guihua Zeng Reply to “Comment on ‘Arbitrated quantum-signature scheme’ ” , 2008 .

[54]  Qing-yu Cai,et al.  The "ping-pong" protocol can be attacked without eavesdropping. , 2003, Physical review letters.

[55]  Fei Gao,et al.  Dense-Coding Attack on Three-Party Quantum Key Distribution Protocols , 2010, IEEE Journal of Quantum Electronics.

[56]  Liusheng Huang,et al.  Quantum group blind signature scheme without entanglement , 2011 .

[57]  Deng Fu-Guo,et al.  Erratum: Improving the security of multiparty quantum secret sharing against Trojan horse attack [Phys. Rev. A 72, 044302 (2005)] , 2006 .

[58]  Qin Li,et al.  Arbitrated quantum signature scheme using Bell states , 2009 .