Geochemical Constraints on the Origin of the Ni–Cu Sulfide Ores in the Tejadillas Prospect (Cortegana Igneous Complex, SW Spain)

After the discovery of the Aguablanca ore deposit (the unique Ni–Cu mine operating in SW Europe), a number of mafic‐ultramafic intrusions bearing Ni–Cu magmatic sulfides have been found in the Ossa–Morena Zone of the Iberian Massif (SW Iberian Peninsula). The Tejadillas prospect is one of these intrusions, situated close to the border between the Ossa–Morena Zone and the South Portuguese Zone of the Iberian Massif. This prospect contains an average grade of 0.16 wt % Ni and 0.08 wt % Cu with peaks of 1.2 wt % Ni and 0.2 wt % Cu. It forms part of the Cortegana Igneous Complex, a group of small mafic‐ultramafic igneous bodies located 65 km west of the Aguablanca deposit. In spite of good initial results, exploration work has revealed that sulfide mineralization is much less abundant than in Aguablanca. A comparative study using whole‐rock geochemical data between Aguablanca and Tejadillas shows that the Tejadillas igneous rocks present a lower degree of crustal contamination than those of Aguablanca. The low crustal contamination of the Tejadillas magmas inhibited the assimilation of significant amounts of crustal sulfur to the silicate magmas, resulting in the sparse formation of sulfides. In addition, Tejadillas sulfides are strongly depleted in PGE, with total PGE contents ranging from 14 to 81 ppb, the sum of Pd and Pt, since Os, Ir, Ru and Rh are usually below or close to the detection limit (2 ppb). High Cu/Pd ratios (9700–146,000) and depleted mantle‐normalized PGE patterns suggest that the Tejadillas sulfides formed from PGE‐depleted silicate magmas. Modeling has led us to establish that these sulfides segregated under R‐factors between 1000 and 10,000 from a silicate melt that previously experienced 0.015% of sulfide extraction. All these results highlight the importance of contamination processes with S‐rich crustal rocks and multiple episodes of sulfide segregations in the genesis of high‐tenor Ni–Cu–PGE ore deposits in mafic‐ultramafic intrusions of the region.

[1]  W. Griffin,et al.  Lithospheric, Cratonic, and Geodynamic Setting of Ni-Cu-PGE Sulfide Deposits , 2010 .

[2]  F. Gervilla,et al.  Origin and emplacement of the Aguablanca magmatic Ni-Cu-PGE sulfide deposit, SW Iberia; a multidisciplinary approach , 2010 .

[3]  S. Barnes,et al.  The Kabanga Ni sulfide deposits, Tanzania: II. Chalcophile and siderophile element geochemistry , 2010 .

[4]  A. Sarkar,et al.  The Kabanga Ni sulfide deposit, Tanzania: I. Geology, petrography, silicate rock geochemistry, and sulfur and oxygen isotopes , 2010 .

[5]  R. García,et al.  Estudio preliminar de la mineralización de sulfuros de Ni-Cu asociada a las rocas ígneas de Cortegana (Huelva) , 2009 .

[6]  N. Grassineau,et al.  Reevaluation of the Role of External Sulfur Addition in the Genesis of Ni-Cu-PGE Deposits: Evidence from the Nebo-Babel Ni-Cu-PGE Deposit, West Musgrave, Western Australia , 2009 .

[7]  Xie‐Yan Song,et al.  Geochemistry of the Kalatongke Ni–Cu–(PGE) sulfide deposit, NW China: implications for the formation of magmatic sulfide mineralization in a postcollisional environment , 2009 .

[8]  F. Pirajno,et al.  Geochemistry of the Permian Kalatongke Mafic Intrusions, Northern Xinjiang, Northwest China: Implications for the Genesis of Magmatic Ni-Cu Sulfide Deposits , 2009 .

[9]  L. Qi,et al.  Controls on variations of platinum-group element concentrations in the sulfide ores of the Jinchuan Ni-Cu deposit, western China , 2008 .

[10]  F. Gervilla,et al.  Mineralogy and geochemistry of platinum-group elements in the Aguablanca Ni-Cu deposit (SW Spain) , 2008 .

[11]  F. Velasco,et al.  The Aguablanca Ni–(Cu) sulfide deposit, SW Spain: geologic and geochemical controls and the relationship with a midcrustal layered mafic complex , 2006 .

[12]  C. Quesada,et al.  U–Pb age constraints on Variscan magmatism and Ni–Cu–PGE metallogeny in the Ossa–Morena Zone (SW Iberia) , 2006, Journal of the Geological Society.

[13]  C. Wang,et al.  Geochemical constraints on the origin of the Permian Baimazhai mafic–ultramafic intrusion, SW China , 2006 .

[14]  F. Gervilla,et al.  Petrology and Geochemistry of Mafic-Ultramafic Fragments from the Aguablanca Ni-Cu Ore Breccia, Southwest Spain , 2006 .

[15]  M. Chichorro,et al.  Inherited arc signature in Ediacaran and Early Cambrian basins of the Ossa-Morena Zone (Iberian Massif, Portugal): Paleogeographic link with European and North African Cadomian correlatives , 2006 .

[16]  María Antonia Caro Hernández,et al.  Reacciones de asimilación de rocas pelíticas en el proceso de formación de las mineralizaciones de ni-cu de agallón, cortegana y olivenza (ossa morena) , 2006 .

[17]  C. Juhlin,et al.  Transpressional collision tectonics and mantle plume dynamics: the Variscides of southwestern Iberia , 2006, Geological Society, London, Memoirs.

[18]  R. García El yacimiento de Ni-Cu-Egp de Aguablanca (Badajoz): caracterización y modelización metalogenética , 2006 .

[19]  R. Keays,et al.  Siderophile and Chalcophile Metal Variations in Flood Basalts from the Siberian Trap, Noril’sk Region: Implications for the Origin of the Ni-Cu-PGE Sulfide Ores , 2005 .

[20]  S. Barnes,et al.  Formation of magmatic nickel-sulfide ore deposits and processses affecting their copper and platinum-group element contents , 2005 .

[21]  A. C. Dorado,et al.  The contact between the Ossa Morena and the South Portuguese zones: characteristics and significance of the Aracena metamorphic belt, in its central sector between Aroche and Aracena (Huelva) , 2004 .

[22]  A. J. Naldrett Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration , 2004 .

[23]  F. Simancas,et al.  Geophysical evidence of a mantle derived intrusion in SW Iberia , 2004 .

[24]  W. Maier,et al.  Compositional variations of olivine from the Jinchuan Ni–Cu sulfide deposit, western China: implications for ore genesis , 2004 .

[25]  J. Melgarejo,et al.  Electromagnetic imaging of Variscan crustal structures in SW Iberia: the role of interconnected graphite , 2004 .

[26]  Christopher Juhlin,et al.  Crustal structure of the transpressional Variscan orogen of SW Iberia: SW Iberia deep seismic reflection profile (IBERSEIS) , 2003 .

[27]  T. Sugawara,et al.  Calorimetric measurements of fusion enthalpies for Ni2SiO4 and Co2SiO4 olivines and application to olivine-liquid partitioning , 2003 .

[28]  G. Jenner,et al.  A study of inherited zircons in granitoid rocks from the South Portuguese and Ossa-Morena Zones, Iberian Massif: support for the exotic origin of the South Portuguese Zone , 2002 .

[29]  F. Velasco,et al.  Erratum to A new style of Ni-Cu mineralization related to magmatic breccia pipes in a transpressional magmatic arc, Aguablanca, Spain , 2001 .

[30]  F. Velasco,et al.  The Aguablanca Cu–Ni ore deposit (Extremadura, Spain), a case of synorogenic orthomagmatic mineralization: age and isotope composition of magmas (Sr, Nd) and ore (S) , 2001 .

[31]  F. Velasco,et al.  A new style of Ni-Cu mineralization related to magmatic breccia pipes in a transpressional magmatic arc, Aguablanca, Spain , 2001 .

[32]  A. J. Naldrett,et al.  Sulfur and oxygen isotopic evidence of country rock contamination in the Voisey's Bay Ni–Cu–Co deposit, Labrador, Canada , 1999 .

[33]  Carlos Segovia Fernández,et al.  Age constraints to the relationships between magmatism, metamorphism and tectonism in the Aracena metamorphic belt, southern Spain , 1999 .

[34]  J. Pedro,et al.  VARISCAN OPHIOLITES AND HIGH-PRESSURE METAMORPHISM IN SOUTHERN IBERIA , 1999 .

[35]  G. Rogers,et al.  Significance of MORB-derived Amphibolites from the Aracena Metamorphic Belt, Southwest Spain , 1996 .

[36]  R. Keays The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits , 1995 .

[37]  P. Fonseca,et al.  The Beja-Acabuches Ophiolite (Southern Iberia Variscan fold belt): Geological characterization and geodynamic significance , 1994 .

[38]  A. J. Naldrett,et al.  Sulfide capacity of magma; a quantitative model and its application to the formation of sulfide ores at Sudbury, Ontario , 1993 .

[39]  P. Fonseca,et al.  40Ar/39Ar mineral age constraints for the tectonothermal evolution of a Variscan suture in southwest Iberia , 1993 .

[40]  C. Quesada,et al.  Geological constraints on the Paleozoic tectonic evolution of tectonostratigraphic terranes in the Iberian Massif , 1991 .

[41]  R. Keays,et al.  Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: Implications for partial melting , 1990 .

[42]  A. J. Naldrett,et al.  Platinum-group elements and gold in the komatiite-hosted Fe-Ni-Cu sulfide deposits at Kambalda, Western Australia , 1986 .

[43]  R. Wendlandt Sulfide saturation of basalt and andesite melts at high pressures and temperatures , 1982 .

[44]  A. J. Naldrett,et al.  The influence of silicate:sulfide ratios on the geochemistry of magmatic sulfides , 1979 .

[45]  P. Roeder,et al.  Olivine-liquid equilibrium , 1970 .

[46]  B. Mason Composition of the Earth , 1966, Nature.

[47]  G. A. Macdonald,et al.  Chemical Composition of Hawaiian Lavas1 , 1964 .