Considering discrepancy when calibrating a mechanistic electrophysiology model

Uncertainty quantification (UQ) is a vital step in using mathematical models and simulations to take decisions. The field of cardiac simulation has begun to explore and adopt UQ methods to characterize uncertainty in model inputs and how that propagates through to outputs or predictions; examples of this can be seen in the papers of this issue. In this review and perspective piece, we draw attention to an important and under-addressed source of uncertainty in our predictions—that of uncertainty in the model structure or the equations themselves. The difference between imperfect models and reality is termed model discrepancy, and we are often uncertain as to the size and consequences of this discrepancy. Here, we provide two examples of the consequences of discrepancy when calibrating models at the ion channel and action potential scales. Furthermore, we attempt to account for this discrepancy when calibrating and validating an ion channel model using different methods, based on modelling the discrepancy using Gaussian processes and autoregressive-moving-average models, then highlight the advantages and shortcomings of each approach. Finally, suggestions and lines of enquiry for future work are provided. This article is part of the theme issue ‘Uncertainty quantification in cardiac and cardiovascular modelling and simulation’.

[1]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[2]  Michel Crucifix,et al.  On the use of simple dynamical systems for climate predictions , 2009, 0906.3625.

[3]  John Salvatier,et al.  Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..

[4]  William W. S. Wei,et al.  Time series analysis - univariate and multivariate methods , 1989 .

[5]  Pras Pathmanathan,et al.  Uncertainty and variability in models of the cardiac action potential: Can we build trustworthy models? , 2016, Journal of molecular and cellular cardiology.

[6]  Michel Crucifix,et al.  Bayesian model selection for the glacial–interglacial cycle , 2015, 1511.03467.

[7]  Rodrigo Weber Dos Santos,et al.  A robust multi-objective optimization framework to capture both cellular and intercellular properties in cardiac cellular model tuning: Analyzing different regions of membrane resistance profile in parameter fitting , 2019, PloS one.

[8]  A. Seheult,et al.  Pressure Matching for Hydrocarbon Reservoirs: A Case Study in the Use of Bayes Linear Strategies for Large Computer Experiments , 1997 .

[9]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[10]  Gary Gintant,et al.  Rechanneling the cardiac proarrhythmia safety paradigm: a meeting report from the Cardiac Safety Research Consortium. , 2014, American heart journal.

[11]  Daniel B. Ennis,et al.  Simulation Methods and Validation Criteria for Modeling Cardiac Ventricular Electrophysiology , 2014, PloS one.

[12]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[13]  Dan Cornford,et al.  Quantifying Simulator Discrepancy in Discrete-Time Dynamical Simulators , 2011 .

[14]  Pras Pathmanathan,et al.  Validation and Trustworthiness of Multiscale Models of Cardiac Electrophysiology , 2018, Front. Physiol..

[15]  D DiFrancesco,et al.  Reciprocal role of the inward currents ib, Na and if in controlling and stabilizing pacemaker frequency of rabbit sino-atrial node cells , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[16]  R. Wilkinson Approximate Bayesian computation (ABC) gives exact results under the assumption of model error , 2008, Statistical applications in genetics and molecular biology.

[17]  R MAIRE,et al.  [Perspectives of the future]. , 1950, Le Medecin generaliste de France.

[18]  A. Stephen McGough,et al.  Black-Box Variational Inference for Stochastic Differential Equations , 2018, ICML.

[19]  Richard E Chandler,et al.  Exploiting strength, discounting weakness: combining information from multiple climate simulators , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  Keith Worden,et al.  On the confidence bounds of Gaussian process NARX models and their higher-order frequency response functions , 2018 .

[21]  Carl E. Rasmussen,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..

[22]  David Gavaghan,et al.  Probabilistic Inference on Noisy Time Series (PINTS) , 2018, Journal of Open Research Software.

[23]  N. Trayanova,et al.  Computational models in cardiology , 2018, Nature Reviews Cardiology.

[24]  Zoubin Ghahramani,et al.  Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.

[25]  Edward J. Vigmond,et al.  Fitting Membrane Resistance along with Action Potential Shape in Cardiac Myocytes Improves Convergence: Application of a Multi-Objective Parallel Genetic Algorithm , 2014, PloS one.

[26]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[27]  D. Noble A modification of the Hodgkin—Huxley equations applicable to Purkinje fibre action and pacemaker potentials , 1962, The Journal of physiology.

[28]  K.H.W.J. ten Tusscher,et al.  Comments on 'A model for human ventricular tissue' : reply , 2005 .

[29]  Rodrigo Weber dos Santos,et al.  Combining Polynomial Chaos Expansions and Genetic Algorithm for the Coupling of Electrophysiological Models , 2019, ICCS.

[30]  Cesare Corrado,et al.  An audit of uncertainty in multi-scale cardiac electrophysiology models , 2020, Philosophical Transactions of the Royal Society A.

[31]  Michael Clerx,et al.  Myokit: A simple interface to cardiac cellular electrophysiology. , 2016, Progress in biophysics and molecular biology.

[32]  Henggui Zhang,et al.  High-throughput screening of drug-binding dynamics to HERG improves early drug safety assessment. , 2013, American journal of physiology. Heart and circulatory physiology.

[33]  Gary R. Mirams,et al.  Uncertainty and variability in computational and mathematical models of cardiac physiology , 2016, The Journal of physiology.

[34]  A. Stuart,et al.  The Bayesian Approach to Inverse Problems , 2013, 1302.6989.

[35]  Trine Krogh-Madsen,et al.  Cell-Specific Cardiac Electrophysiology Models , 2015, PLoS Comput. Biol..

[36]  Pras Pathmanathan,et al.  Ensuring reliability of safety-critical clinical applications of computational cardiac models , 2013, Front. Physiol..

[37]  Siem Jan Koopman,et al.  Time Series Analysis by State Space Methods , 2001 .

[38]  Denis Noble,et al.  How the Hodgkin–Huxley equations inspired the Cardiac Physiome Project , 2012, The Journal of physiology.

[39]  Pras Pathmanathan,et al.  Comprehensive Uncertainty Quantification and Sensitivity Analysis for Cardiac Action Potential Models , 2019, Front. Physiol..

[40]  Carl E. Rasmussen,et al.  Bayesian Inference and Learning in Gaussian Process State-Space Models with Particle MCMC , 2013, NIPS.

[41]  Jenný Brynjarsdóttir,et al.  Learning about physical parameters: the importance of model discrepancy , 2014 .

[42]  Eric Kerfoot,et al.  Verification of cardiac tissue electrophysiology simulators using an N-version benchmark , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[43]  A. V. D. Vaart,et al.  Misspecification in infinite-dimensional Bayesian statistics , 2006, math/0607023.

[44]  Andrew Phillips,et al.  Efficient Amortised Bayesian Inference for Hierarchical and Nonlinear Dynamical Systems , 2019, ICML.

[45]  Hui Yang,et al.  Calibrating Functional Parameters in the Ion Channel Models of Cardiac Cells , 2016 .

[46]  Yanan Fan,et al.  Handbook of Approximate Bayesian Computation , 2018 .

[47]  Min Wu,et al.  Assessment of an In Silico Mechanistic Model for Proarrhythmia Risk Prediction Under the CiPA Initiative , 2018, Clinical pharmacology and therapeutics.

[48]  Christopher S Oehmen,et al.  Mathematical Model of the Rapidly Activating Delayed Rectifier Potassium Current IKr in Rabbit Sinoatrial Node , 2002, Journal of cardiovascular electrophysiology.

[49]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[50]  Peter Willett,et al.  What is a tutorial , 2013 .

[51]  Michael Clerx,et al.  Reproducible model development in the cardiac electrophysiology Web Lab , 2018, bioRxiv.

[52]  Hervé Delingette,et al.  Patient-specific Electromechanical Models of the Heart for the Prediction of Pacing Acute Effects in Crt: a Preliminary Clinical Validation , 2022 .

[53]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[54]  John Salvatier,et al.  Theano: A Python framework for fast computation of mathematical expressions , 2016, ArXiv.

[55]  A. Panfilov,et al.  Nonstationary vortexlike reentrant activity as a mechanism of polymorphic ventricular tachycardia in the isolated rabbit heart. , 1995, Circulation.

[56]  Pras Pathmanathan,et al.  Verification of computational models of cardiac electro‐physiology , 2014, International journal for numerical methods in biomedical engineering.

[57]  James Hensman,et al.  ABC for Climate: Dealing with Expensive Simulators , 2015, Handbook of Approximate Bayesian Computation.

[58]  Chon Lok Lei,et al.  Tailoring Mathematical Models to Stem-Cell Derived Cardiomyocyte Lines Can Improve Predictions of Drug-Induced Changes to Their Electrophysiology , 2017, Front. Physiol..

[59]  N. Ravishanker,et al.  Bayesian Analysis of ARMA Processes: Complete Sampling Based Inference Under Full Likelihoods , 1996 .

[60]  Gary R. Mirams,et al.  Calibration of ionic and cellular cardiac electrophysiology models , 2020, Wiley interdisciplinary reviews. Systems biology and medicine.

[61]  S. Walker,et al.  Bayesian asymptotics with misspecified models , 2013 .

[62]  Jamie I. Vandenberg,et al.  Sinusoidal voltage protocols for rapid characterisation of ion channel kinetics , 2017, bioRxiv.

[63]  Michael Goldstein,et al.  Second-Order Exchangeability Analysis for Multimodel Ensembles , 2013 .

[64]  J. Hancox,et al.  Rapid characterisation of hERG channel kinetics II: temperature dependence , 2019, bioRxiv.

[65]  Skipper Seabold,et al.  Statsmodels: Econometric and Statistical Modeling with Python , 2010, SciPy.

[66]  Gary R. Mirams,et al.  Application of cardiac electrophysiology simulations to pro-arrhythmic safety testing , 2012, British journal of pharmacology.

[67]  Denis Noble,et al.  The Cardiac Physiome: perspectives for the future , 2009, Experimental physiology.

[68]  Chon Lok Lei,et al.  Rapid Characterization of hERG Channel Kinetics I: Using an Automated High-Throughput System , 2019, Biophysical journal.

[69]  Henggui Zhang,et al.  Cardiac cell modelling: observations from the heart of the cardiac physiome project. , 2011, Progress in biophysics and molecular biology.

[70]  Gary R. Mirams,et al.  Rapid Characterization of hERG Channel Kinetics II: Temperature Dependence , 2019, bioRxiv.

[71]  Hervé Delingette,et al.  Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia , 2011, Interface Focus.

[72]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[73]  Denis Noble,et al.  Contributions of HERG K+ current to repolarization of the human ventricular action potential. , 2008, Progress in biophysics and molecular biology.

[74]  Adrian E. Raftery,et al.  Bayesian Model Averaging: A Tutorial , 2016 .

[75]  Mark A. Girolami,et al.  Bayesian inference for differential equations , 2008, Theor. Comput. Sci..

[76]  M. Plumlee Bayesian Calibration of Inexact Computer Models , 2017 .

[77]  Chon Lok Lei,et al.  Rapid characterisation of hERG channel kinetics I: using an automated high-throughput system , 2019, bioRxiv.

[78]  Dominic G. Whittaker,et al.  Accounting for variability in ion current recordings using a mathematical model of artefacts in voltage-clamp experiments , 2020, Philosophical Transactions of the Royal Society A.

[79]  Michael Goldstein,et al.  Bayesian Forecasting for Complex Systems Using Computer Simulators , 2001 .