Encoding trade-offs and design toolkits in quantum algorithms for discrete optimization: coloring, routing, scheduling, and other problems

Challenging combinatorial optimization problems are ubiquitous in science and engineering. Several quantum methods for optimization have recently been developed, in different settings including both exact and approximate solvers. Addressing this field of research, this manuscript has three distinct purposes. First, we present an intuitive method for synthesizing and analyzing discrete (i.e., integer-based) optimization problems, wherein the problem and corresponding algorithmic primitives are expressed using a discrete quantum intermediate representation (DQIR) that is encoding-independent. This compact representation often allows for more efficient problem compilation, automated analyses of different encoding choices, easier interpretability, more complex runtime procedures, and richer programmability, as compared to previous approaches, which we demonstrate with a number of examples. Second, we perform numerical studies comparing several qubit encodings; the results exhibit a number of preliminary trends that help guide the choice of encoding for a particular set of hardware and a particular problem and algorithm. Our study includes problems related to graph coloring, the traveling salesperson problem, factory/machine scheduling, financial portfolio rebalancing, and integer linear programming. Third, we design low-depth graph-derived partial mixers (GDPMs) up to 16-level quantum variables, demonstrating that compact (binary) encodings are more amenable to QAOA than previously understood. We expect this toolkit of programming abstractions and low-level building blocks to aid in designing quantum algorithms for discrete combinatorial problems.

[1]  A. Glos,et al.  Near-optimal circuit design for variational quantum optimization , 2022, 2209.03386.

[2]  Nicolas PD Sawaya,et al.  mat2qubit: A lightweight pythonic package for qubit encodings of vibrational, bosonic, graph coloring, routing, scheduling, and general matrix problems , 2022, ArXiv.

[3]  A. Glos,et al.  Space-efficient binary optimization for variational quantum computing , 2022, npj Quantum Information.

[4]  M. Lewenstein,et al.  Quantum approximate optimization algorithm for qudit systems , 2022, Physical Review A.

[5]  Alexander Stasik,et al.  Constraint Preserving Mixers for the Quantum Approximate Optimization Algorithm , 2022, Algorithms.

[6]  G. Guerreschi,et al.  An LLVM-based C++ Compiler Toolchain for Variational Hybrid Quantum-Classical Algorithms and Quantum Accelerators , 2022, ArXiv.

[7]  Daniel A. Lidar,et al.  Standard quantum annealing outperforms adiabatic reverse annealing with decoherence , 2022, Physical Review A.

[8]  D. Venturelli,et al.  Numerical gate synthesis for quantum heuristics on bosonic quantum processors , 2022, Frontiers in Physics.

[9]  Kunal Marwaha,et al.  QAOAKit: A Toolkit for Reproducible Study, Application, and Verification of the QAOA , 2021, 2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS).

[10]  Stuart Hadfield,et al.  Bounds on approximating Max kXOR with quantum and classical local algorithms , 2021, Quantum.

[11]  Mattia Fiorentini,et al.  A case study of variational quantum algorithms for a job shop scheduling problem , 2021, EPJ Quantum Technology.

[12]  A. McCaskey,et al.  Enabling Retargetable Optimizing Compilers for Quantum Accelerators via a Multi-Level Intermediate Representation , 2021, 2109.00506.

[13]  Nicholas Chancellor,et al.  Understanding domain-wall encoding theoretically and experimentally , 2021, Philosophical Transactions of the Royal Society A.

[14]  Jaroslaw Adam Miszczak,et al.  Error mitigation for variational quantum algorithms through mid-circuit measurements , 2021, 2108.10927.

[15]  P. Love,et al.  Counterdiabaticity and the quantum approximate optimization algorithm , 2021, Quantum.

[16]  Jaroslaw Adam Miszczak,et al.  Unconstrained binary models of the travelling salesman problem variants for quantum optimization , 2021, Quantum Information Processing.

[17]  Boaz Barak,et al.  Classical algorithms and quantum limitations for maximum cut on high-girth graphs , 2021, ITCS.

[18]  P. Love,et al.  Classically Optimal Variational Quantum Algorithms , 2021, IEEE Transactions on Quantum Engineering.

[19]  H. Katzgraber,et al.  Embedding Overhead Scaling of Optimization Problems in Quantum Annealing , 2021, PRX Quantum.

[20]  J. Biamonte,et al.  Parameter concentrations in quantum approximate optimization , 2021, Physical Review A.

[21]  Matthew D. Grace,et al.  Feedback-Based Quantum Optimization. , 2021, Physical review letters.

[22]  N. Govind,et al.  VQE method: a short survey and recent developments , 2021, Materials Theory.

[23]  Nicolas P. D. Sawaya,et al.  Graph Optimization Perspective for Low-Depth Trotter-Suzuki Decomposition , 2021, 2103.08602.

[24]  Bryan O'Gorman,et al.  Quantum-accelerated constraint programming , 2021, Quantum.

[25]  T. Stollenwerk,et al.  Performance of Domain-Wall Encoding for Quantum Annealing , 2021, IEEE Transactions on Quantum Engineering.

[26]  L. Brady,et al.  Optimal Protocols in Quantum Annealing and Quantum Approximate Optimization Algorithm Problems. , 2021, Physical review letters.

[27]  L. Cincio,et al.  Layer VQE: A Variational Approach for Combinatorial Optimization on Noisy Quantum Computers , 2021, IEEE Transactions on Quantum Engineering.

[28]  Minh C. Tran,et al.  Theory of Trotter Error with Commutator Scaling , 2021 .

[29]  Alexander McCaskey,et al.  A MLIR Dialect for Quantum Assembly Languages , 2021, 2021 IEEE International Conference on Quantum Computing and Engineering (QCE).

[30]  Gian Giacomo Guerreschi,et al.  Solving Quadratic Unconstrained Binary Optimization with divide-and-conquer and quantum algorithms , 2021, ArXiv.

[31]  M. Kliesch,et al.  Training Variational Quantum Algorithms Is NP-Hard. , 2021, Physical review letters.

[32]  S. Perdrix,et al.  Qualifying quantum approaches for hard industrial optimization problems. A case study in the field of smart-charging of electric vehicles , 2020, EPJ Quantum Technology.

[33]  S. Tayur,et al.  Quantum Integer Programming (QuIP) 47-779: Lecture Notes , 2020, 2012.11382.

[34]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[35]  Tad Hogg,et al.  Classical symmetries and the Quantum Approximate Optimization Algorithm , 2020, Quantum Information Processing.

[36]  E. Rieffel,et al.  Quantum algorithms with local particle-number conservation: Noise effects and error correction , 2020, 2011.06873.

[37]  Bartłomiej Gardas,et al.  Quantum computing approach to railway dispatching and conflict management optimization on single-track railway lines , 2020, ArXiv.

[38]  Jakub Marecek,et al.  Warm-starting quantum optimization , 2020, Quantum.

[39]  G. Nemhauser,et al.  Integer Programming , 2020 .

[40]  Adam Glos,et al.  Space-efficient binary optimization for variational computing , 2020, 2009.07309.

[41]  Adam Glos,et al.  Quantum Optimization for the Graph Coloring Problem with Space-Efficient Embedding , 2020, 2020 IEEE International Conference on Quantum Computing and Engineering (QCE).

[42]  Raul Garcia-Patron,et al.  Limitations of optimization algorithms on noisy quantum devices , 2020, Nature Physics.

[43]  Nicolas P. D. Sawaya,et al.  Near- and long-term quantum algorithmic approaches for vibrational spectroscopy , 2020, Physical Review A.

[44]  Herman Oie Kolden,et al.  Efficient Encoding of the Weighted MAX $$k$$ k -CUT on a Quantum Computer Using QAOA , 2020, SN Comput. Sci..

[45]  Cong Ling,et al.  Two quantum Ising algorithms for the shortest-vector problem , 2020, 2006.14057.

[46]  Hannes Leipold,et al.  Constructing driver Hamiltonians for optimization problems with linear constraints , 2020, Quantum Science and Technology.

[47]  E. Rieffel,et al.  Ferromagnetically Shifting the Power of Pausing , 2020, 2006.08526.

[48]  Jakob S. Kottmann,et al.  Quantum computer-aided design of quantum optics hardware , 2020, Quantum Science and Technology.

[49]  S. Eidenbenz,et al.  Grover Mixers for QAOA: Shifting Complexity from Mixer Design to State Preparation , 2020, 2020 IEEE International Conference on Quantum Computing and Engineering (QCE).

[50]  Gian Giacomo Guerreschi,et al.  On connectivity-dependent resource requirements for digital quantum simulation of d-level particles , 2020, 2020 IEEE International Conference on Quantum Computing and Engineering (QCE).

[51]  Hristo Djidjev,et al.  Embedding Algorithms for Quantum Annealers with Chimera and Pegasus Connection Topologies , 2020, ISC.

[52]  Nicholas J. Mayhall,et al.  An adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer , 2020, 2005.10258.

[53]  Pauline J Ollitrault,et al.  Hardware efficient quantum algorithms for vibrational structure calculations , 2020, Chemical science.

[54]  Yue Ruan,et al.  Quantum approximate algorithm for NP optimization problems with constraints , 2020, ArXiv.

[55]  E. Rieffel,et al.  XY mixers: Analytical and numerical results for the quantum alternating operator ansatz , 2020 .

[56]  Diego Garc'ia-Mart'in,et al.  Quantum unary approach to option pricing , 2019, Physical Review A.

[57]  S. Dulman,et al.  Portfolio rebalancing experiments using the Quantum Alternating Operator Ansatz , 2019, 1911.05296.

[58]  A. J. Rindos,et al.  Solving Multi-Coloring Combinatorial Optimization Problems Using Hybrid Quantum Algorithms , 2019, ArXiv.

[59]  Gian Giacomo Guerreschi,et al.  Resource-efficient digital quantum simulation of d-level systems for photonic, vibrational, and spin-s Hamiltonians , 2019, npj Quantum Information.

[60]  Martin Leib,et al.  Training the quantum approximate optimization algorithm without access to a quantum processing unit , 2019, Quantum Science and Technology.

[61]  Stuart Hadfield,et al.  Optimizing quantum heuristics with meta-learning , 2019, Quantum Machine Intelligence.

[62]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[63]  Masoud Mohseni,et al.  Learning to learn with quantum neural networks via classical neural networks , 2019, ArXiv.

[64]  Vladyslav Verteletskyi,et al.  Measurement optimization in the variational quantum eigensolver using a minimum clique cover. , 2019, The Journal of chemical physics.

[65]  V. Akshay,et al.  Reachability Deficits in Quantum Approximate Optimization , 2019, Physical review letters.

[66]  M. B. Hastings,et al.  Classical and quantum bounded depth approximation algorithms , 2019, Quantum Inf. Comput..

[67]  Nicholas J. Mayhall,et al.  Efficient symmetry-preserving state preparation circuits for the variational quantum eigensolver algorithm , 2019, npj Quantum Information.

[68]  Shih-Han Hung,et al.  Verified Optimization in a Quantum Intermediate Representation , 2019, ArXiv.

[69]  Helmut G. Katzgraber,et al.  Perspectives of quantum annealing: methods and implementations , 2019, Reports on progress in physics. Physical Society.

[70]  Nicholas Chancellor,et al.  Domain wall encoding of integer variables for quantum annealing and QAOA , 2019 .

[71]  Nicholas Chancellor,et al.  Domain wall encoding of discrete variables for quantum annealing and QAOA , 2019, Quantum Science and Technology.

[72]  F. Brandão,et al.  Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution , 2019, Nature Physics.

[73]  Nikesh S. Dattani,et al.  Pegasus: The second connectivity graph for large-scale quantum annealing hardware , 2019, ArXiv.

[74]  S. Jordan,et al.  Bang-bang control as a design principle for classical and quantum optimization algorithms , 2018, Quantum Inf. Comput..

[75]  Leo Zhou,et al.  Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices , 2018, Physical Review X.

[76]  E. Campbell Random Compiler for Fast Hamiltonian Simulation. , 2018, Physical review letters.

[77]  Xiao Yuan,et al.  Digital quantum simulation of molecular vibrations , 2018, Chemical science.

[78]  Davide Venturelli,et al.  Reverse quantum annealing approach to portfolio optimization problems , 2018, Quantum Machine Intelligence.

[79]  Yuan Su,et al.  Faster quantum simulation by randomization , 2018, Quantum.

[80]  Rolando L. La Placa,et al.  How many qubits are needed for quantum computational supremacy? , 2018, Quantum.

[81]  Stuart Hadfield,et al.  Quantum Algorithms for Scientific Computing and Approximate Optimization , 2018, 1805.03265.

[82]  Stuart Hadfield,et al.  On the Representation of Boolean and Real Functions as Hamiltonians for Quantum Computing , 2018, ACM Transactions on Quantum Computing.

[83]  Ying Li,et al.  Variational ansatz-based quantum simulation of imaginary time evolution , 2018, npj Quantum Information.

[84]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[85]  M. Hastings A Short Path Quantum Algorithm for Exact Optimization , 2018, Quantum.

[86]  Panagiotis Spentzouris,et al.  Electron-Phonon Systems on a Universal Quantum Computer. , 2018, Physical review letters.

[87]  Rupak Biswas,et al.  Quantum Annealing Applied to De-Conflicting Optimal Trajectories for Air Traffic Management , 2017, IEEE Transactions on Intelligent Transportation Systems.

[88]  Rupak Biswas,et al.  Quantum Approximate Optimization with Hard and Soft Constraints , 2017 .

[89]  Yudong Cao,et al.  OpenFermion: the electronic structure package for quantum computers , 2017, Quantum Science and Technology.

[90]  Andrew W. Cross,et al.  Quantum optimization using variational algorithms on near-term quantum devices , 2017, Quantum Science and Technology.

[91]  Rupak Biswas,et al.  From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz , 2017, Algorithms.

[92]  Andrew W. Cross,et al.  Open Quantum Assembly Language , 2017, 1707.03429.

[93]  Andy R. Terrel,et al.  SymPy: Symbolic computing in Python , 2017, PeerJ Prepr..

[94]  L. DiCarlo,et al.  Scalable Quantum Circuit and Control for a Superconducting Surface Code , 2016, 1612.08208.

[95]  Bryan O'Gorman,et al.  Comparing planning problem compilation approaches for quantum annealing , 2016, The Knowledge Engineering Review.

[96]  I. Chuang,et al.  Hamiltonian Simulation by Qubitization , 2016, Quantum.

[97]  J. Christopher Beck,et al.  A Hybrid Quantum-Classical Approach to Solving Scheduling Problems , 2016, SOCS.

[98]  I. Chuang,et al.  Optimal Hamiltonian Simulation by Quantum Signal Processing. , 2016, Physical review letters.

[99]  Itay Hen,et al.  Driver Hamiltonians for constrained optimization in quantum annealing , 2016, 1602.07942.

[100]  P. Pagliuso,et al.  Dilution effects in spin 7/2 systems. The case of the antiferromagnet GdRhIn5 , 2015, 1512.04571.

[101]  Vandana Shukla,et al.  Application of CSMT gate for efficient reversible realization of binary to gray code converter circuit , 2015, 2015 IEEE UP Section Conference on Electrical Computer and Electronics (UPCON).

[102]  P. Zoller,et al.  A quantum annealing architecture with all-to-all connectivity from local interactions , 2015, Science Advances.

[103]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[104]  Itay Hen,et al.  Quantum Annealing for Constrained Optimization , 2015, 1508.04212.

[105]  Simon J. Devitt,et al.  Blueprint for a microwave trapped ion quantum computer , 2015, Science Advances.

[106]  D. Venturelli,et al.  Quantum Annealing Implementation of Job-Shop Scheduling , 2015 .

[107]  Kostyantyn Kechedzhi,et al.  Open system quantum annealing in mean field models with exponential degeneracy , 2015, 1505.05878.

[108]  Andrew M. Childs,et al.  Hamiltonian Simulation with Nearly Optimal Dependence on all Parameters , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[109]  Andrew M. Childs,et al.  Simulating Hamiltonian dynamics with a truncated Taylor series. , 2014, Physical review letters.

[110]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[111]  Alan Crispin,et al.  Quantum Annealing Algorithm for Vehicle Scheduling , 2013, 2013 IEEE International Conference on Systems, Man, and Cybernetics.

[112]  Andrew Lucas,et al.  Ising formulations of many NP problems , 2013, Front. Physics.

[113]  Daniel A. Lidar,et al.  Experimental signature of programmable quantum annealing , 2012, Nature Communications.

[114]  Igor L. Markov,et al.  Synthesis and optimization of reversible circuits—a survey , 2011, CSUR.

[115]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[116]  Andrew M. Childs,et al.  Black-box hamiltonian simulation and unitary implementation , 2009, Quantum Inf. Comput..

[117]  Derya Eren Akyol,et al.  Multi-machine earliness and tardiness scheduling problem: an interconnected neural network approach , 2008 .

[118]  Igor L. Markov,et al.  On the CNOT-cost of TOFFOLI gates , 2008, Quantum Inf. Comput..

[119]  E. Knill,et al.  Liquid-state nuclear magnetic resonance as a testbed for developing quantum control methods , 2008, 0803.1982.

[120]  Liming Wang,et al.  Single-machine scheduling to stochastically minimize maximum lateness , 2007 .

[121]  P. Love,et al.  Thermally assisted adiabatic quantum computation. , 2006, Physical review letters.

[122]  A. Slepoy Quantum gate decomposition algorithms. , 2006 .

[123]  Martin Rötteler,et al.  Quantum Error Correction , 2008, Encyclopedia of Algorithms.

[124]  Daniel A. Lidar,et al.  Adiabatic quantum computation in open systems. , 2005, Physical review letters.

[125]  D. Atkin OR scheduling algorithms. , 2000, Anesthesiology.

[126]  T. Hogg,et al.  Quantum optimization , 2000, Inf. Sci..

[127]  Chris N. Potts,et al.  Single machine scheduling with batch set-up times to minimize maximum lateness , 1997, Ann. Oper. Res..

[128]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[129]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[130]  John Smolin,et al.  Results on two-bit gate design for quantum computers , 1994, Proceedings Workshop on Physics and Computation. PhysComp '94.

[131]  M. Suzuki,et al.  Decomposition formulas of exponential operators and Lie exponentials with some applications to quantum mechanics and statistical physics , 1985 .

[132]  M. Suzuki,et al.  Generalized Trotter's formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems , 1976 .

[133]  Martin Suchara,et al.  Quantum Divide and Conquer for Combinatorial Optimization and Distributed Computing , 2021 .

[134]  Nozomu Togawa,et al.  Performance Comparison of Typical Binary-Integer Encodings in an Ising Machine , 2021, IEEE Access.

[135]  Katarzyna Rycerz,et al.  Variational Algorithms for Workflow Scheduling Problem in Gate-Based Quantum Devices , 2021, Comput. Informatics.

[136]  T. Stollenwerk,et al.  Toward Quantum Gate-Model Heuristics for Real-World Planning Problems , 2020, IEEE Transactions on Quantum Engineering.

[137]  T. Sanders,et al.  Analysis of Boolean Functions , 2012, ArXiv.

[138]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[139]  D. McMahon Adiabatic Quantum Computation , 2008 .

[140]  Alfred V. Aho,et al.  A layered software architecture for quantum computing design tools , 2006, Computer.

[141]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .