Real-time Visualization of 3-d Dynamic Microscopic Objects Using Optical Diffraction Tomography References and Links

3-D refractive index (RI) distribution is an intrinsic bio-marker for the chemical and structural information about biological cells. Here we develop an optical diffraction tomography technique for the real-time reconstruction of 3-D RI distribution, employing sparse angle illumination and a graphic processing unit (GPU) implementation. The execution time for the tomographic reconstruction is 0.21 s for 96(3) voxels, which is 17 times faster than that of a conventional approach. We demonstrated the real-time visualization capability with imaging the dynamics of Brownian motion of an anisotropic colloidal dimer and the dynamic shape change in a red blood cell upon shear flow.

[1]  V. Tuchin,et al.  The refractive index of human hemoglobin in the visible range , 2011, Physics in medicine and biology.

[2]  H. Pham,et al.  Diffraction phase microscopy with white light. , 2012, Optics letters.

[3]  Victoria J Allan,et al.  Light Microscopy Techniques for Live Cell Imaging , 2003, Science.

[4]  Michael Elad,et al.  On the Uniqueness of Nonnegative Sparse Solutions to Underdetermined Systems of Equations , 2008, IEEE Transactions on Information Theory.

[5]  Nir S. Gov,et al.  Metabolic remodeling of the human red blood cell membrane , 2010, Proceedings of the National Academy of Sciences.

[6]  Eric Morales,et al.  Crosstalk Between PKA and Epac Regulates the Phenotypic Maturation and Function of Human Dendritic Cells , 2010, The Journal of Immunology.

[7]  Zhuo Wang,et al.  Optical measurement of cycle-dependent cell growth , 2011, Proceedings of the National Academy of Sciences.

[8]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[9]  YongKeun Park,et al.  Real-time quantitative phase imaging with a spatial phase-shifting algorithm. , 2011, Optics letters.

[10]  Yongjin Sung,et al.  Video-rate tomographic phase microscopy. , 2011, Journal of biomedical optics.

[11]  G. Biros,et al.  Complexity of vesicle microcirculation. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  J. Rogers,et al.  Spatial light interference microscopy (SLIM) , 2010, IEEE Photonic Society 24th Annual Meeting.

[13]  Huafeng Ding,et al.  Off-axis quantitative phase imaging processing using CUDA: toward real-time applications , 2011, Biomedical optics express.

[14]  Jerker Widengren,et al.  Single Molecule Spectroscopy in Chemistry, Physics and Biology , 2010 .

[15]  D. Sampson,et al.  Synthetic aperture fourier holographic optical microscopy. , 2006, Physical review letters.

[16]  YoungJu Jo,et al.  Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications , 2013, Sensors.

[17]  S. Jacques,et al.  Measurement of single cell refractive index, dry mass, volume, and density using a transillumination microscope. , 2012, Physical review letters.

[18]  Jaeduck Jang,et al.  Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells. , 2012, Optics express.

[19]  Gabriel Popescu,et al.  Optical imaging of cell mass and growth dynamics. , 2008, American journal of physiology. Cell physiology.

[20]  YongKeun Park,et al.  High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography , 2013, Journal of biomedical optics.

[21]  Vinothan N Manoharan,et al.  Holographic measurements of anisotropic three-dimensional diffusion of colloidal clusters. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  C. Fang-Yen,et al.  Optical diffraction tomography for high resolution live cell imaging. , 2009, Optics express.

[23]  M. Glas,et al.  Principles of Computerized Tomographic Imaging , 2000 .

[24]  C. Fang-Yen,et al.  Label-free imaging of membrane potential using membrane electromotility. , 2012, Biophysical journal.

[25]  Subra Suresh,et al.  Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient. , 2012, Acta biomaterialia.

[26]  Yongjin Sung,et al.  Stain-Free Quantification of Chromosomes in Live Cells Using Regularized Tomographic Phase Microscopy , 2012, PloS one.

[27]  E. Wolf Three-dimensional structure determination of semi-transparent objects from holographic data , 1969 .

[28]  Inmaculada García,et al.  High performance computing for Optical Diffraction Tomography , 2012, 2012 International Conference on High Performance Computing & Simulation (HPCS).

[29]  YongKeun Park,et al.  Optical imaging techniques for the study of malaria. , 2012, Trends in biotechnology.

[30]  Subra Suresh,et al.  Biophysics of Malarial Parasite Exit from Infected Erythrocytes , 2011, PloS one.

[31]  E. Cuche,et al.  Cell refractive index tomography by digital holographic microscopy. , 2006, Optics letters.

[32]  YongKeun Park,et al.  Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells , 2009, BiOS.

[33]  V. Lauer New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope , 2002, Journal of microscopy.

[34]  E. Cuche,et al.  Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. , 2000, Applied optics.

[35]  Christian Depeursinge,et al.  Diffraction tomography for biological cells imaging using digital holographic microscopy , 2010, Laser Applications in Life Sciences.

[36]  Zahid Yaqoob,et al.  Speckle-field digital holographic microscopy , 2009, BiOS.

[37]  Subra Suresh,et al.  Pf155/RESA protein influences the dynamic microcirculatory behavior of ring-stage Plasmodium falciparum infected red blood cells , 2012, Scientific Reports.

[38]  C. Fang-Yen,et al.  Tomographic phase microscopy , 2008, Nature Methods.

[39]  M. Nobili,et al.  Brownian Motion of an Ellipsoid , 2006, Science.

[40]  D. Pine,et al.  Decoupling of rotational and translational diffusion in supercooled colloidal fluids , 2011, Proceedings of the National Academy of Sciences.

[41]  J. Lichtman,et al.  Optical sectioning microscopy , 2005, Nature Methods.

[42]  Gabriel Popescu Real-time Quantitative Phase Imaging , 2013 .

[43]  Gabriel Popescu,et al.  Measurement of red blood cell mechanics during morphological changes , 2010, Proceedings of the National Academy of Sciences.

[44]  Gabriel Popescu,et al.  Measurement of the nonlinear elasticity of red blood cell membranes. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Hui Liu,et al.  GPU acceleration towards real-time image reconstruction in 3D tomographic diffractive microscopy , 2012, Real-Time Image and Video Processing.

[46]  Gabriel Popescu,et al.  Imaging red blood cell dynamics by quantitative phase microscopy. , 2008, Blood cells, molecules & diseases.

[47]  Yizheng Zhu,et al.  Quantitative phase spectroscopy , 2012, Biomedical optics express.

[48]  James J. Feng,et al.  Simulation of malaria-infected red blood cells in microfluidic channels: Passage and blockage. , 2013, Biomicrofluidics.

[49]  Jaeduck Jang,et al.  Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging. , 2013, Analytical chemistry.

[50]  David M. Kaz,et al.  Measuring translational, rotational, and vibrational dynamics in colloids with digital holographic microscopy. , 2011, Optics express.

[51]  Xiaochuan Pan,et al.  Accurate image reconstruction from few-view and limited-angle data in diffraction tomography. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[52]  Yongjin Sung,et al.  Quantitative dispersion microscopy , 2010, Biomedical optics express.

[53]  Yongkeun Park,et al.  Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum , 2008, Proceedings of the National Academy of Sciences.

[54]  Petia M. Vlahovska,et al.  Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease. , 2013, Soft matter.

[55]  YongKeun Park,et al.  Fourier-transform light scattering of individual colloidal clusters. , 2012, Optics letters.

[56]  Marcel A. Lauterbach,et al.  Far-Field Optical Nanoscopy , 2009 .

[57]  Barry R. Masters,et al.  Quantitative Phase Imaging of Cells and Tissues , 2012 .

[58]  M. Solomon,et al.  Translational and rotational dynamics of colloidal rods by direct visualization with confocal microscopy. , 2007, Journal of colloid and interface science.

[59]  R M Hochmuth,et al.  Adhesion of red cells to foreign surfaces in the presence of flow. , 1974, Journal of biomedical materials research.

[60]  Gabriel Popescu,et al.  Derivative method for phase retrieval in off-axis quantitative phase imaging. , 2012, Optics letters.

[61]  Kyoohyun Kim,et al.  Synthetic Fourier transform light scattering. , 2013, Optics express.