A Survey in Mathematics for Industry: Open problems in the qualitative approach to inverse electromagnetic scattering theory

We formulate a number of open problems for time-harmonic inverse electromagnetic scattering theory focusing on uniqueness theorems, the determination of the support of a scattering object and the determination of material parameters

[1]  Petri Ola,et al.  Electromagnetic Inverse Problems and Generalized Sommerfeld Potentials , 1996, SIAM J. Appl. Math..

[2]  Guy Chavent,et al.  Inverse Problems of Wave Propagation and Diffraction , 1997 .

[3]  Houssem Haddar,et al.  The interior transmission problem for anisotropic Maxwell's equations and its applications to the inverse problem , 2004 .

[4]  Claus Müller,et al.  Greensche tensoren und asymptotische gesetze der elektromagnetischen hohlraumschwingungen , 1961 .

[5]  David Colton,et al.  Uniqueness Theorems for the Inverse Problem of Acoustic Scattering , 1983 .

[6]  A. Kirsch The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media , 2002 .

[7]  D. Colton,et al.  The linear sampling method in inverse electromagnetic scattering theory , 2003 .

[8]  P Hahner,et al.  A uniqueness theorem for a transmission problem in inverse electromagnetic scattering , 1993 .

[9]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[10]  D. Colton,et al.  A simple method using Morozov's discrepancy principle for solving inverse scattering problems , 1997 .

[11]  Joyce R. McLaughlin,et al.  On the Uniqueness of a Spherically Symmetric Speed of Sound from Transmission Eigenvalues , 1994 .

[12]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[13]  Peter Monk,et al.  The linear sampling method for solving the electromagnetic inverse medium problem , 2002 .

[14]  Luca Rondi,et al.  Unique determination of non-smooth sound-soft scatterers by finitely many far-field measurements , 2003 .

[15]  David Colton,et al.  Eigenvalues of the Far Field Operator for the Helmholtz Equation in an Absorbing Medium , 1995, SIAM J. Appl. Math..

[16]  T. Arens,et al.  Why linear sampling works , 2004 .

[17]  Roland Potthast,et al.  A 'range test' for determining scatterers with unknown physical properties , 2003 .

[18]  Gang Bao,et al.  Inverse medium scattering for three-dimensional time harmonic Maxwell equations , 2004 .

[19]  Rainer Kress,et al.  On uniqueness in inverse obstacle scattering , 1993 .

[20]  Matthias Vögeler,et al.  Reconstruction of the three-dimensional refractive index in electromagnetic scattering by using a propagation-backpropagation method , 2003 .

[21]  D. Colton,et al.  Combined far‐ield operators in electromagnetic inverse scattering theory , 2003 .

[22]  Rainer Kress,et al.  UNIQUENESS IN INVERSE OBSTACLE SCATTERING , 2002 .

[23]  Andreas Kirsch,et al.  Factorization of the far-field operator for the inhomogeneous medium case and an application in inverse scattering theory , 1999 .

[24]  Steven Kusiak,et al.  The scattering support , 2003 .

[25]  D. Colton,et al.  THE ELECTROMAGNETIC INVERSE SCATTERING PROBLEM FOR PARTIALLY COATED LIPSCHITZ DOMAINS , 1997 .

[26]  G. Uhlmann Inverse Scattering in Anisotropic Media , 2000 .

[27]  G. Alessandrini,et al.  Corrigendum to ``Determining a sound-soft polyhedral scatterer by a single far-field measurement'' , 2003, math/0307004.

[28]  Peter Monk,et al.  The Determination of the Surface Conductivity of a Partially Coated Dielectric , 2005, SIAM J. Appl. Math..

[29]  A. Kirsch,et al.  A simple method for solving inverse scattering problems in the resonance region , 1996 .

[30]  Gunther Uhlmann,et al.  An inverse boundary value problem for Maxwell's equations , 1992 .

[31]  Fioralba Cakoni,et al.  A UNIQUENESS THEOREM FOR AN INVERSE ELECTROMAGNETIC SCATTERING PROBLEM IN INHOMOGENEOUS ANISOTROPIC MEDIA , 2003, Proceedings of the Edinburgh Mathematical Society.

[32]  Andreas Kirsch,et al.  Characterization of the shape of a scattering obstacle using the spectral data of the far field operator , 1998 .

[33]  Fioralba Cakoni,et al.  The Determination of the Surface Impedance of a Partially Coated Obstacle from Far Field Data , 2004, SIAM J. Appl. Math..

[34]  David Colton,et al.  The uniqueness of a solution to an inverse scattering problem for electromagnetic waves , 1992 .

[35]  Peter Monk,et al.  The Linear Sampling Method for Solving the Electromagnetic Inverse Scattering Problem , 2002, SIAM J. Sci. Comput..

[36]  William Rundell,et al.  Surveys on solution methods for inverse problems , 2000 .

[37]  Christophe Hazard,et al.  Selective Acoustic Focusing Using Time-Harmonic Reversal Mirrors , 2004, SIAM J. Appl. Math..

[38]  Petri Ola,et al.  An inverse boundary value problem in electrodynamics , 1993 .

[39]  Günther Lehner,et al.  Inverse 3D acoustic and electromagnetic obstacle scattering by iterative adaptation , 1997 .

[40]  Jin Cheng,et al.  Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves , 2005 .