The physics of superplastic deformation

Abstract Superplasticity is an important mode of deformation in metallic alloys with very small grain sizes (usually less than 10 μm). In general, high elongations are observed over a rather limited range of intermediate strain rates and there is a decrease in the superplastic effect at both high and low strain rates. The major experimental observations in superplastic metals are summarized and the physical mechanisms of flow are discussed with reference to the behavior at high, intermediate and low strain rates, respectively. Superplastic-like behavior has been reported recently in some ceramics but the experimental evidence suggests that the mechanism of flow in these materials in not the as in metals.

[1]  M. Mayo,et al.  Direct observation of superplastic flow mechanisms in torsion , 1989 .

[2]  N. A. Gjostein Comment on: “investigation of relative interfacial free energies in 304 stainless steel by electron transmission and diffraction microscopy” , 1969 .

[3]  R. Raj,et al.  Solution-precipitation creep in glass ceramics , 1981 .

[4]  W. Nix,et al.  Diffusional creep and diffusionally accommodated grain rearrangement , 1978 .

[5]  T. Langdon The significance of grain boundary dislocations in mechanical behavior , 1971 .

[6]  Robert L. Coble,et al.  A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials , 1963 .

[7]  John W. Hutchinson,et al.  Influence of strain-rate sensitivity on necking under uniaxial tension , 1977 .

[8]  F. Mohamed,et al.  Superplastic deformation behavior in commercial and high purity Zn- 22 Pct Al , 1988, Metallurgical and Materials Transactions A.

[9]  R. C. Gifkins Grain rearrangements during superplastic deformation , 1978 .

[10]  F. Mohamed On the threshold stress for superplastic flow , 1988 .

[11]  E. W. Hart Theory of the tensile test , 1967 .

[12]  T. Langdon,et al.  Creep of ceramics , 1983 .

[13]  Conyers Herring,et al.  Diffusional Viscosity of a Polycrystalline Solid , 1950 .

[14]  R. Pearce,et al.  In situ superplasticity experiments in the 1 million volt electron microscope , 1973 .

[15]  Terence G. Langdon,et al.  Factors influencing ductility in the superplastic Zn-22 Pct Al eutectoid , 1977 .

[16]  T. Langdon,et al.  Creep at low stress levels in the superplastic Zn-22% Al eutectoid , 1975 .

[17]  R. C. Gifkins Grain-boundary sliding and its accommodation during creep and superplasticity , 1976 .

[18]  T. Langdon The mechanical properties of superplastic materials , 1982 .

[19]  T. Langdon,et al.  The role of matrix dislocations in the superplastic deformation of a copper alloy , 1986 .

[20]  A. Ghosh,et al.  Micromechanical modelling of creep using distributed parameters , 1981 .

[21]  G. S. Murty,et al.  The stress-strain rate behaviour of superplastic Zn-Al eutectoid alloy , 1988 .

[22]  F. Mohamed Interpretation of superplastic flow in terms of a threshold stress , 1983 .

[23]  F. Nichols Plastic instabilities and uniaxial tensile ductilities , 1980 .

[24]  Amiya K. Mukherjee,et al.  The rate controlling mechanism in superplasticity , 1971 .

[25]  D. Lee The strain rate dependent plastic flow behavior of zirconium and its alloys , 1970 .

[26]  Rishi Raj,et al.  Grain size distribution effects in superplasticity , 1981 .

[27]  R. Pearce,et al.  Microstructural-mechanism relationship in the zinc/ aluminium eutectoid superplastic alloy , 1975 .

[28]  Terence G. Langdon,et al.  Deformation mechanism maps for superplastic materials , 1976 .

[29]  Rishi Raj,et al.  Creep in polycrystalline aggregates by matter transport through a liquid phase , 1982 .

[30]  Michael F. Ashby,et al.  Diffusion-accommodated flow and superplasticity , 1973 .

[31]  T. Langdon,et al.  The activation energies associated with superplastic flow , 1975 .

[32]  P. Hazzledine,et al.  The low strain rate behaviour of superplastic ZnAl eutectoid alloy , 1979 .

[33]  T. Langdon Observations on the magnitude of grain boundary sliding in Region 1 of superplasticity , 1981 .

[34]  F. Mohamed,et al.  Effect of impurity content on superplastic flow in the Zn-22% Al alloy , 1988 .

[35]  G. Dunlop,et al.  A high-temperature tensile testing rig for ceramic materials , 1988 .

[36]  T. Nieh,et al.  Superplastic properties of a fine-grained yttria-stabilized tetragonal polycrystal of zirconia , 1988 .

[37]  U. F. Kocks,et al.  The development of strain-rate gradients , 1979 .

[38]  T. Langdon,et al.  An investigation of grain boundary sliding in superplasticity at high elongations , 1988 .

[39]  A. Mukherjee,et al.  A model for the rate-controlling mechanism in superplasticity , 1980 .

[40]  T. Langdon,et al.  A microstructural examination of the flow behaviour of a superplastic copper alloy , 1981 .

[41]  T. Langdon,et al.  Superplasticity in ceramics , 1990 .