N-Channel (110)-Sidewall Strained FinFETs With Silicon–Carbon Source and Drain Stressors and Tensile Capping Layer

The performance of n-channel (110)-sidewall trigate fin-shaped field-effect transistors (FinFETs) is seriously compromised as (110) surfaces have significantly lower electron mobility than (100) surfaces. Straining the channel in (110)-sidewall FinFETs using lattice-mismatched silicon-carbon (Si1-yCy) stressors alone was experimentally determined to be far less effective than doing the same with (100)-sidewall FinFETs. By additionally incorporating a tensile silicon nitride contact etch-stop layer, the increase in longitudinal tensile stress and the introduction of vertical compressive stress result in significant further IDsat enhancement, highlighting the importance of the vertical compressive stress component for enhancing (110)-sidewall FinFET performance.

[1]  C. Hu,et al.  FinFET-a self-aligned double-gate MOSFET scalable to 20 nm , 2000 .

[2]  Jeffrey Bokor,et al.  Extremely scaled silicon nano-CMOS devices , 2003, Proc. IEEE.

[3]  G. Dewey,et al.  Tri-Gate Transistor Architecture with High-k Gate Dielectrics, Metal Gates and Strain Engineering , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[4]  E. Sleeckx,et al.  Performance improvement of tall triple gate devices with strained SiN layers , 2005, IEEE Electron Device Letters.

[5]  Charles S. Smith Piezoresistance Effect in Germanium and Silicon , 1954 .

[6]  Yasuhiko Ishikawa,et al.  Thermal agglomeration of single-crystalline Si layer on buried SiO2 in ultrahigh vacuum , 2002 .

[7]  Yee-Chia Yeo,et al.  Enhancing CMOS transistor performance using lattice-mismatched materials in source/drain regions , 2006, 2006 International SiGe Technology and Device Meeting.

[8]  B. Ghyselen,et al.  Performance Enhancement of MUGFET Devices Using Super Critical Strained-SOI (SC-SSOI) and CESL , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[9]  M. Tabe,et al.  Effect of patterning on thermal agglomeration of ultrathin silicon-on-insulator layer , 2002 .

[10]  M. Saitoh,et al.  Carrier Transport in (110) nMOSFETs: Subband Structures, Non-Parabolicity, Mobility Characteristics, and Uniaxial Stress Engineering , 2006, 2006 International Electron Devices Meeting.

[11]  Chenming Hu,et al.  5nm-gate nanowire FinFET , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[12]  Yee-Chia Yeo,et al.  Strained N-Channel FinFETs with 25 nm Gate Length and Silicon-Carbon Source/Drain Regions for Performance Enhancement , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[13]  Yasuhiko Ishikawa,et al.  Pattern-induced alignment of silicon islands on buried oxide layer of silicon-on-insulator structure , 2003 .

[14]  Bin Yu,et al.  FinFET scaling to 10 nm gate length , 2002, Digest. International Electron Devices Meeting,.

[15]  C. Mazure,et al.  Impact of strained-silicon-on-insulator (sSOI) substrate on FinFET mobility , 2006, IEEE Electron Device Letters.

[16]  Zheng Guo,et al.  FinFET-based SRAM design , 2005, ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005..

[17]  Ying Zhang,et al.  Extension and source/drain design for high-performance FinFET devices , 2003 .

[18]  Y. Kanda,et al.  A graphical representation of the piezoresistance coefficients in silicon , 1982, IEEE Transactions on Electron Devices.

[19]  T. Tezuka,et al.  Electron Transport Properties of Ultrathin-body and Tri-gate SOI nMOSFETs with Biaxial and Uniaxial Strain , 2006, 2006 International Electron Devices Meeting.

[20]  Chi On Chui,et al.  Dual stress capping layer enhancement study for hybrid orientation finFET CMOS technology , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..