A graph of a relational structure and constraint satisfaction problems

In the constraint satisfaction problem CSP(H) corresponding to a finite relational structure H, the aim is to decide, given a relational structure G, whether there exists a homomorphism from G to H. In (Bulatov, 2003), we proved that if H is a conservative structure, then it can be associated with a complete edge-3-colored graph whose vertex set is the universe of H. The complexity and a solution algorithm for CSP(H) strongly depend on certain properties of the associated graph. In this paper we show how a similar edge-3-colored graph can be defined for an arbitrary finite relational structure H. Then we study properties of the defined graph and find a solution algorithm for CSP(H), where G(H) satisfies some restrictions. The latter result substantially generalizes the results (2000,2002,1998,1997) concerning max-closed constraints and constraints with a 2-semilattice, semigroup or conservative groupoid polymorphism. Finally, we complete the study of the complexity of maximal constraint languages started in (Bulatov et al., 2001).

[1]  Andrei A. Bulatov,et al.  Tractable conservative constraint satisfaction problems , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[2]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.

[3]  Peter Jeavons,et al.  On the Algebraic Structure of Combinatorial Problems , 1998, Theor. Comput. Sci..

[4]  Jaroslav Nesetril,et al.  On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.

[5]  Phokion G. Kolaitis,et al.  Constraint Satisfaction, Bounded Treewidth, and Finite-Variable Logics , 2002, CP.

[6]  Peter Jeavons FINITE SEMIGROUPS IMPOSING TRACTABLE CONSTRAINTS , 2002 .

[7]  Víctor Dalmau,et al.  A new tractable class of constraint satisfaction problems , 2005, Annals of Mathematics and Artificial Intelligence.

[8]  Ugo Montanari,et al.  Networks of constraints: Fundamental properties and applications to picture processing , 1974, Inf. Sci..

[9]  Martin C. Cooper An Optimal k-Consistency Algorithm , 1989, Artif. Intell..

[10]  I. Rosenberg MINIMAL CLONES I: THE FIVE TYPES , 1986 .

[11]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraints on a three-element set , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[12]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[13]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[14]  Phokion G. Kolaitis,et al.  Conjunctive-Query Containment and Constraint Satisfaction , 2000, J. Comput. Syst. Sci..

[15]  Georg Gottlob,et al.  Hypertree Decompositions: A Survey , 2001, MFCS.

[16]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[17]  Georg Gottlob,et al.  A Comparison of Structural CSP Decomposition Methods , 1999, IJCAI.

[18]  Martin Grohe,et al.  The complexity of homomorphism and constraint satisfaction problems seen from the other side , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[19]  Víctor Dalmau,et al.  Constraint Satisfaction Problems in Non-deterministic Logarithmic Space , 2002, ICALP.

[20]  Martin C. Cooper,et al.  Constraints, Consistency and Closure , 1998, Artif. Intell..

[21]  Andrei A. Bulatov,et al.  Mal'tsev constraints are tractable , 2002, Electron. Colloquium Comput. Complex..

[22]  Peter Jeavons,et al.  The complexity of maximal constraint languages , 2001, STOC '01.

[23]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[24]  Phokion G. Kolaitis,et al.  A Game-Theoretic Approach to Constraint Satisfaction , 2000, AAAI/IAAI.

[25]  Peter Jeavons,et al.  Tractable constraints closed under a binary operation , 2000 .

[26]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[27]  Marc Gyssens,et al.  Closure properties of constrains , 1997 .

[28]  Rina Dechter,et al.  From Local to Global Consistency , 1990, Artif. Intell..