Stochastic PDEs and Lack of Regularity

We review results on the existence and uniqueness for a surface growth model with or without space–time white noise. If the surface is a graph, then this model has striking similarities to the three dimensional Navier-Stokes equations in terms of energy estimates and scaling properties, and in both models the question of uniqueness of global weak solutions remains open.In the physically relevant dimension d=2$d=2$ and with the physically relevant space–time white noise driving the equation, the direct fixed-point argument for mild solutions fails, as there is not sufficient regularity for the stochastic forcing. The situation is the simplest case where the method of regularity structures introduced by Martin Hairer can be applied, although we follow here a significantly simpler approach to highlight the key problems. Using spectral Galerkin method or any other type of regularization of the noise, one can give a rigorous meaning to the stochastic PDE and show existence and uniqueness of local solutions in that setting. Moreover, several types of regularization seem to yield all the same solution.We finally comment briefly on possible blow up phenomena and show with a simple argument that many complex-valued solutions actually do blow up in finite time. This shows that energy estimates alone are not enough to verify global uniqueness of solutions. Results in this direction are known already for the 3D-Navier Stokes by Li and Sinai, treating complex valued solutions, and more recently by Tao by constructing an equation of Navier-Stokes type with blow up.

[1]  Lai,et al.  Kinetic growth with surface relaxation: Continuum versus atomistic models. , 1991, Physical review letters.

[2]  Y. Sinai,et al.  Complex singularities of solutions of some 1D hydrodynamic models , 2008 .

[3]  G. Prato,et al.  Two-Dimensional Navier--Stokes Equations Driven by a Space--Time White Noise , 2002 .

[4]  F. Gazzola,et al.  Global existence versus blow-up results for a fourth order parabolic PDE involving the Hessian , 2015, 1503.06697.

[5]  Barabási,et al.  Dynamic scaling of ion-sputtered surfaces. , 1995, Physical review letters.

[6]  Decay of weak solutions and the singular set of the three-dimensional Navier-Stokes equations , 2006, math/0612425.

[7]  L. Agélas Global regularity of solutions of equation modeling epitaxy thin film growth in Rd,d=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} , 2014, Journal of Evolution Equations.

[8]  D. Blömker,et al.  Local existence and uniqueness in the largest critical space for a surface growth model , 2010, 1003.4298.

[9]  Yicheng Zhang,et al.  Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics , 1995 .

[10]  M. Romito Analysis of Equilibrium States of Markov Solutions to the 3D Navier-Stokes Equations Driven by Additive Noise , 2007, 0709.3267.

[11]  R. Kohn,et al.  Partial regularity of suitable weak solutions of the navier‐stokes equations , 1982 .

[12]  Martin Hairer,et al.  A theory of regularity structures , 2013, 1303.5113.

[13]  Ronald H. W. Hoppe,et al.  A combined spectral element/finite element approach to the numerical solution of a nonlinear evolution equation describing amorphous surface growth of thin films , 2002, J. Num. Math..

[14]  Pierre Gilles Lemarié-Rieusset,et al.  Recent Developments in the Navier-Stokes Problem , 2002 .

[15]  D. Blömker,et al.  Local Existence and Uniqueness for a Two-Dimensional Surface Growth Equation with Space-Time White Noise , 2013, 1307.4034.

[16]  H. Koch,et al.  Geometric flows with rough initial data , 2009, 0902.1488.

[17]  J. Muñoz-García,et al.  Coupling of morphology to surface transport in ion-beam-irradiated surfaces: normal incidence and rotating targets , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  J. B. Walsh,et al.  An introduction to stochastic partial differential equations , 1986 .

[19]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[20]  M. Röckner,et al.  A Concise Course on Stochastic Partial Differential Equations , 2007 .

[21]  Thin-Film-Growth-Models: On local solutions , 2004 .

[22]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[23]  F. Flandoli,et al.  Statistically Stationary Solutions to the 3D Navier-Stokes Equations do not show Singularities , 2001 .

[24]  Martin Hairer,et al.  A Course on Rough Paths , 2020, Universitext.

[25]  Pierre Germain,et al.  Regularity of Solutions to the Navier-Stokes Equations Evolving from Small Data in BMO−1 , 2006, math/0609781.

[26]  M. Romito Critical strong Feller regularity for Markov solutions to the Navier-Stokes equations , 2010, 1003.4623.

[27]  M. Winkler,et al.  Amorphous molecular beam epitaxy: global solutions and absorbing sets , 2005, European Journal of Applied Mathematics.

[28]  P. Chow Stochastic partial differential equations , 1996 .

[29]  A. Barabasi,et al.  Fractal concepts in surface growth , 1995 .

[30]  C. Morosi,et al.  ON APPROXIMATE SOLUTIONS OF SEMILINEAR EVOLUTION EQUATIONS II: GENERALIZATIONS, AND APPLICATIONS TO NAVIER–STOKES EQUATIONS , 2007, 0709.1670.

[31]  Regularity of transition semigroups associated to a 3D stochastic Navier-Stokes equation , 2006, math/0609317.

[32]  Tosio Kato Nonstationary flows of viscous and ideal fluids in R3 , 1972 .

[33]  M. Romito The Martingale Problem for Markov Solutions to the Navier-Stokes Equations , 2009, 0902.1402.

[34]  Martin Hairer,et al.  An Introduction to Stochastic PDEs , 2009, 0907.4178.

[35]  Marco Cannone,et al.  Chapter 3 - Harmonic Analysis Tools for Solving the Incompressible Navier–Stokes Equations , 2005 .

[36]  Self-organized ordering of nanostructures produced by ion-beam sputtering. , 2005, Physical review letters.

[37]  Marco Romito,et al.  Ergodicity of the 3D stochastic Navier-Stokes equations driven by mildly degenerate noises:Galerkin approximation approach , 2009, 0906.4281.

[38]  J. Villain Continuum models of crystal growth from atomic beams with and without desorption , 1991 .

[39]  刘 凯湘 Stability of infinite dimensional stochastic differential equations with applications , 2006 .

[40]  D. Blomker,et al.  A probabilistic representation for the solutions to some non-linear PDEs using pruned branching trees , 2005 .

[41]  C. Morosi,et al.  On approximate solutions of the incompressible Euler and Navier–Stokes equations , 2011, 1104.3832.

[42]  Martin Hairer,et al.  Rough Burgers-like equations with multiplicative noise , 2010, 1012.1236.

[43]  J. Eckmann,et al.  A global attracting set for the Kuramoto-Sivashinsky equation , 1993 .

[44]  M. Romito Existence of martingale and stationary suitable weak solutions for a stochastic Navier–Stokes system , 2006, math/0609318.

[45]  Francesco Morandin,et al.  Global regularity for a slightly supercritical hyperdissipative Navier-Stokes system , 2014, 1407.6734.

[46]  A. Barabasi,et al.  Fractal Concepts in Surface Growth: Frontmatter , 1995 .

[47]  Wei Liu,et al.  Local and global well-posedness of SPDE with generalized coercivity conditions☆ , 2012, 1202.0019.

[48]  Evan D. Nash,et al.  Numerical Solution of a Nonlinear Evolution Equation Describing Amorphous Surface Growth of Thin Films , 2004 .

[49]  B. Rozovskii,et al.  Stochastic evolution equations , 1981 .

[50]  G. Prodi Un teorema di unicità per le equazioni di Navier-Stokes , 1959 .

[51]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[52]  M. Romito An almost sure energy inequality for Markov solutions to the 3D Navier-Stokes equations , 2009, 0902.1407.

[53]  M. Winkler Global solutions in higher dimensions to a fourth-order parabolic equation modeling epitaxial thin-film growth , 2011 .

[54]  Michael Röckner,et al.  Martingale solutions and Markov selections for stochastic partial differential equations , 2009 .

[55]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[56]  A. Verga,et al.  Effect of step stiffness and diffusion anisotropy on the meandering of a growing vicinal surface. , 2006, Physical review letters.

[57]  A. Debussche,et al.  Markov solutions for the 3D stochastic Navier–Stokes equations with state dependent noise , 2005, math/0512361.

[58]  D. Barbato,et al.  Smooth solutions for the dyadic model , 2010, 1007.3401.

[59]  Hiroshi Fujita,et al.  On the Navier-Stokes initial value problem. I , 1964 .

[60]  P. Hänggi,et al.  Amorphous Thin Film Growth: Modeling and Pattern Formation , 2001 .

[61]  D. Blömker,et al.  Thin-film-growth models: roughness and correlation functions , 2002, European Journal of Applied Mathematics.

[62]  W. Stannat Stochastic Partial Differential Equations: Kolmogorov Operators and Invariant Measures , 2011 .

[63]  D. Blomker,et al.  Regularity and blow-up in a surface growth model , 2009, 0902.1409.

[64]  D. Blömker Nonhomogeneous Noise and Q-Wiener Processes on Bounded Domains , 2005 .

[65]  C. Escudero,et al.  On radial stationary solutions to a model of non-equilibrium growth , 2013, European Journal of Applied Mathematics.

[66]  A. Lunardi Analytic Semigroups and Optimal Regularity in Parabolic Problems , 2003 .

[67]  Vladimir Scheffer Turbulence and Hausdorff dimension , 1976 .

[68]  Changyou Wang Well-posedness for the Heat Flow of Biharmonic Maps with Rough Initial Data , 2010, Journal of Geometric Analysis.

[69]  Franco Flandoli,et al.  An Introduction to 3D Stochastic Fluid Dynamics , 2008 .

[70]  C. Morosi,et al.  An H1 setting for the Navier–Stokes equations: Quantitative estimates , 2009, 0909.3707.

[71]  Martin Hairer,et al.  Stationary Solutions for a Model of Amorphous Thin-Film Growth , 2002, Stochastic Analysis and Applications.

[72]  Rongchan Zhu,et al.  Three-dimensional Navier-Stokes equations driven by space-time white noise , 2014, 1406.0047.

[73]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[74]  Zhang,et al.  Dynamic scaling of growing interfaces. , 1986, Physical review letters.

[75]  Luis Vázquez,et al.  Observation and modeling of interrupted pattern coarsening: surface nanostructuring by ion erosion. , 2010, Physical review letters.

[76]  Edward Nelson The free Markoff field , 1973 .

[77]  Rongchan Zhu,et al.  Local existence and non-explosion of solutions for stochastic fractional partial differential equations driven by multiplicative noise , 2013, 1307.4392.

[78]  Germany,et al.  Amorphous thin-film growth: Theory compared with experiment , 1999, cond-mat/9912249.

[79]  D. Barbato,et al.  Global regularity for a logarithmically supercritical hyperdissipative dyadic equation , 2014, 1403.2852.

[80]  Giuseppe Da Prato,et al.  Ergodicity for the 3D stochastic Navier–Stokes equations , 2003 .

[81]  M. Romito Uniqueness and blow-up for a stochastic viscous dyadic model , 2014 .

[82]  Herbert Koch,et al.  Well-posedness for the Navier–Stokes Equations , 2001 .

[83]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[84]  D. Blömker,et al.  On the existence of solutions for amorphous molecular beam epitaxy , 2002 .

[85]  Y. Sinai,et al.  Blow ups of complex solutions of the 3D NavierStokes system and renormalization group method , 2008 .

[86]  F. Flandoli,et al.  Markovianity and ergodicity for a surface growth PDE , 2006, math/0611021.

[87]  H. Swann The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in ₃ , 1971 .

[88]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[89]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[90]  James C. Robinson,et al.  Rigorous Numerical Verification of Uniqueness and Smoothness in a Surface Growth Model , 2013, 1311.2205.

[91]  Wilhelm Stannat,et al.  Improved moment estimates for invariant measures of semilinear diffusions in Hilbert spaces and applications , 2009, 0911.1206.

[92]  T. Tao Finite time blowup for an averaged three-dimensional Navier-Stokes equation , 2014, 1402.0290.

[93]  P. Imkeller,et al.  Paraproducts, rough paths and controlled distributions , 2012 .

[94]  R. Schilling,et al.  Brownian Motion: An Introduction to Stochastic Processes , 2012 .

[95]  James C. Robinson,et al.  An A Posteriori Condition on the Numerical Approximations of the Navier-Stokes Equations for the Existence of a Strong Solution , 2008, SIAM J. Numer. Anal..

[96]  James C. Robinson,et al.  A posteriori regularity of the three-dimensional Navier–Stokes equations from numerical computations , 2006, math/0607181.

[97]  Linz,et al.  Amorphous thin film growth: minimal deposition equation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[98]  S. Maier-Paape,et al.  Roughness in surface growth equations , 2001 .

[99]  D. Kravvaritis,et al.  On evolution inclusions with nonconvex valued orientor fields , 1996 .

[100]  J. Serrin On the interior regularity of weak solutions of the Navier-Stokes equations , 1962 .

[101]  F. Flandoli,et al.  Markov selections for the 3D stochastic Navier–Stokes equations , 2006 .

[102]  Martin Hairer Solving the KPZ equation , 2011, 1109.6811.

[103]  T. Tao Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation , 2009, 0906.3070.

[104]  Martin Hairer,et al.  Large deviations for white-noise driven, nonlinear stochastic PDEs in two and three dimensions , 2014, 1404.5863.

[105]  M. Plischke,et al.  Solid-on-solid models of molecular-beam epitaxy. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[106]  Martin Hairer,et al.  A Course on Rough Paths: With an Introduction to Regularity Structures , 2014 .

[107]  Winfried Sickel,et al.  Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations , 1996, de Gruyter series in nonlinear analysis and applications.

[108]  F. Flandoli,et al.  Markov selections and their regularity for the three-dimensional stochastic Navier–Stokes equations , 2006 .

[109]  From the conserved Kuramoto-Sivashinsky equation to a coalescing particles model , 2008, 0804.0160.

[110]  Tosio Kato,et al.  Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .

[111]  Giuseppe Da Prato,et al.  Stochastic Cahn-Hilliard equation , 1996 .

[112]  Grant,et al.  Dynamics of driven interfaces with a conservation law. , 1989, Physical review. A, General physics.