Quantum Dot-Peptide-Fullerene Bioconjugates for Visualization of in Vitro and in Vivo Cellular Membrane Potential.

We report the development of a quantum dot (QD)-peptide-fullerene (C60) electron transfer (ET)-based nanobioconjugate for the visualization of membrane potential in living cells. The bioconjugate is composed of (1) a central QD electron donor, (2) a membrane-inserting peptidyl linker, and (3) a C60 electron acceptor. The photoexcited QD donor engages in ET with the C60 acceptor, resulting in quenching of QD photoluminescence (PL) that tracks positively with the number of C60 moieties arrayed around the QD. The nature of the QD-capping ligand also modulates the quenching efficiency; a neutral ligand coating facilitates greater QD quenching than a negatively charged carboxylated ligand. Steady-state photophysical characterization confirms an ET-driven process between the donor-acceptor pair. When introduced to cells, the amphiphilic QD-peptide-C60 bioconjugate labels the plasma membrane by insertion of the peptide-C60 portion into the hydrophobic bilayer, while the hydrophilic QD sits on the exofacial side of the membrane. Depolarization of cellular membrane potential augments the ET process, which is manifested as further quenching of QD PL. We demonstrate in HeLa cells, PC12 cells, and primary cortical neurons significant QD PL quenching (ΔF/F0 of 2-20% depending on the QD-C60 separation distance) in response to membrane depolarization with KCl. Further, we show the ability to use the QD-peptide-C60 probe in combination with conventional voltage-sensitive dyes (VSDs) for simultaneous two-channel imaging of membrane potential. In in vivo imaging of cortical electrical stimulation, the optical response of the optimal QD-peptide-C60 configuration exhibits temporal responsivity to electrical stimulation similar to that of VSDs. Notably, however, the QD-peptide-C60 construct displays 20- to 40-fold greater ΔF/F0 than VSDs. The tractable nature of the QD-peptide-C60 system offers the advantages of ease of assembly, large ΔF/F0, enhanced photostability, and high throughput without the need for complicated organic synthesis or genetic engineering, respectively, that is required of traditional VSDs and fluorescent protein constructs.

[1]  Markita P. Landry,et al.  Advances in nanomaterials for brain microscopy , 2018, Nano Research.

[2]  Michael L. Roukes,et al.  Nanofabricated Neural Probes for Dense 3-D Recordings of Brain Activity , 2016, Nano letters.

[3]  David J. Weinberg,et al.  Control of the Redox Activity of PbS Quantum Dots by Tuning Electrostatic Interactions at the Quantum Dot/Solvent Interface. , 2016, Journal of the American Chemical Society.

[4]  Igor L. Medintz,et al.  Emerging Physicochemical Phenomena along with New Opportunities at the Biomolecular-Nanoparticle Interface. , 2016, The journal of physical chemistry letters.

[5]  Bradley J. Baker,et al.  Toward Better Genetically Encoded Sensors of Membrane Potential , 2016, Trends in Neurosciences.

[6]  Srdjan D Antic,et al.  Voltage imaging to understand connections and functions of neuronal circuits. , 2016, Journal of neurophysiology.

[7]  A. Violi,et al.  C60 fullerene localization and membrane interactions in RAW 264.7 immortalized mouse macrophages. , 2016, Nanoscale.

[8]  Rong Tong,et al.  New Strategies in Cancer Nanomedicine. , 2016, Annual review of pharmacology and toxicology.

[9]  Clare E. Rowland,et al.  Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes. , 2015, Nano letters.

[10]  Igor L. Medintz,et al.  Examining the Polyproline Nanoscopic Ruler in the Context of Quantum Dots , 2015 .

[11]  Evan W. Miller,et al.  A Photostable Silicon Rhodamine Platform for Optical Voltage Sensing. , 2015, Journal of the American Chemical Society.

[12]  Igor L. Medintz,et al.  Increasing the activity of immobilized enzymes with nanoparticle conjugation. , 2015, Current opinion in biotechnology.

[13]  Igor L. Medintz,et al.  Understanding How Nanoparticle Attachment Enhances Phosphotriesterase Kinetic Efficiency. , 2015, ACS nano.

[14]  N. Tkachenko,et al.  Photoinduced Electron Transfer in CdSe/ZnS Quantum Dot–Fullerene Hybrids , 2015 .

[15]  N. Hildebrandt,et al.  Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. , 2015, Chemical Society reviews.

[16]  Philip E. Dawson,et al.  The Role of Negative Charge in the Delivery of Quantum Dots to Neurons , 2015, ASN neuro.

[17]  Philip E. Dawson,et al.  Delivery and tracking of quantum dot peptide bioconjugates in an intact developing avian brain. , 2015, ACS chemical neuroscience.

[18]  Electron tunneling from colloidal CdSe quantum dots to ZnO nanowires studied by time-resolved luminescence and photoconductivity experiments , 2015, 1502.03279.

[19]  Evan W. Miller,et al.  Improved PeT molecules for optically sensing voltage in neurons. , 2015, Journal of the American Chemical Society.

[20]  Vladimir N. Uversky,et al.  Beyond the Excluded Volume Effects: Mechanistic Complexity of the Crowded Milieu , 2015, Molecules.

[21]  Leslie M Loew,et al.  Design and Use of Organic Voltage Sensitive Dyes. , 2015, Advances in experimental medicine and biology.

[22]  Ruqiang Liang,et al.  Monitoring activity in neural circuits with genetically encoded indicators , 2014, Front. Mol. Neurosci..

[23]  Igor L. Medintz,et al.  Quantum dot-based multiphoton fluorescent pipettes for targeted neuronal electrophysiology , 2014, Nature Methods.

[24]  Igor L. Medintz,et al.  A New Family of Pyridine-Appended Multidentate Polymers As Hydrophilic Surface Ligands for Preparing Stable Biocompatible Quantum Dots , 2014 .

[25]  Igor L. Medintz,et al.  In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far? , 2014, Beilstein journal of nanotechnology.

[26]  K. Niikura,et al.  Surface engineering of nanoparticles for therapeutic applications , 2014 .

[27]  Jimut Kanti Ghosh,et al.  Design and characterization of short antimicrobial peptides using leucine zipper templates with selectivity towards microorganisms , 2014, Amino Acids.

[28]  N. Thakor,et al.  Recent progress in voltage-sensitive dye imaging for neuroscience. , 2014, Journal of nanoscience and nanotechnology.

[29]  Samouil L. Farhi,et al.  All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins , 2014, Nature Methods.

[30]  Juan B. Blanco-Canosa,et al.  Recent progress in the bioconjugation of quantum dots , 2014 .

[31]  J. H. Zhang,et al.  Effect of Self-Assembly of Fullerene Nano-Particles on Lipid Membrane , 2013, PloS one.

[32]  Duane E. Prasuhn,et al.  Competition between Förster resonance energy transfer and electron transfer in stoichiometrically assembled semiconductor quantum dot-fullerene conjugates. , 2013, ACS nano.

[33]  Igor L. Medintz,et al.  Cytotoxicity of quantum dots used for in vitro cellular labeling: role of QD surface ligand, delivery modality, cell type, and direct comparison to organic fluorophores. , 2013, Bioconjugate chemistry.

[34]  Duane E. Prasuhn,et al.  Site-specific cellular delivery of quantum dots with chemoselectively-assembled modular peptides. , 2013, Chemical communications.

[35]  P. Kamat,et al.  Quantum Dot Surface Chemistry: Ligand Effects and Electron Transfer Reactions , 2013 .

[36]  Hamid Charkhkar,et al.  Differential responses to ω-agatoxin IVA in murine frontal cortex and spinal cord derived neuronal networks. , 2013, Neurotoxicology.

[37]  Daniel W. A. Buchan,et al.  Scalable web services for the PSIPRED Protein Analysis Workbench , 2013, Nucleic Acids Res..

[38]  Igor L. Medintz,et al.  Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials. , 2013, ACS nano.

[39]  Jesse D. Marshall,et al.  Optical strategies for sensing neuronal voltage using quantum dots and other semiconductor nanocrystals. , 2013, ACS nano.

[40]  P. Weiss President Obama announces the BRAIN Initiative. , 2013, ACS nano.

[41]  Dougal Maclaurin,et al.  Mechanism of voltage-sensitive fluorescence in a microbial rhodopsin , 2013, Proceedings of the National Academy of Sciences.

[42]  Rafael Yuste,et al.  Nanotools for neuroscience and brain activity mapping. , 2013, ACS nano.

[43]  S. Greenfield,et al.  An evaluation of in vivo voltage-sensitive dyes: pharmacological side effects and signal-to-noise ratios after effective removal of brain-pulsation artifacts. , 2012, Journal of neurophysiology.

[44]  Anne M Andrews,et al.  Nano in the brain: nano-neuroscience. , 2012, ACS nano.

[45]  Shimon Weiss,et al.  Single Molecule Quantum-Confined Stark Effect Measurements of Semiconductor Nanoparticles at Room Temperature , 2012, ACS nano.

[46]  C. Kubiak,et al.  Controlling the rate of electron transfer between a quantum dot and a tri-ruthenium molecular cluster by tuning the chemistry of the interface. , 2012, Physical chemistry chemical physics : PCCP.

[47]  Igor L. Medintz,et al.  Nanoparticle targeting to neurons in a rat hippocampal slice culture model , 2012, ASN neuro.

[48]  R. Yuste,et al.  The Brain Activity Map Project and the Challenge of Functional Connectomics , 2012, Neuron.

[49]  Igor L. Medintz,et al.  Complex Förster energy transfer interactions between semiconductor quantum dots and a redox-active osmium assembly. , 2012, ACS nano.

[50]  Xiong Gong,et al.  Organic photoresponse materials and devices. , 2012, Chemical Society reviews.

[51]  Roger Y. Tsien,et al.  Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires , 2012, Proceedings of the National Academy of Sciences.

[52]  J. Kikuchi,et al.  Location of [60]fullerene incorporation in lipid membranes. , 2011, Chemical communications.

[53]  Jesse V Jokerst,et al.  Nanoparticle PEGylation for imaging and therapy. , 2011, Nanomedicine.

[54]  Naomi J Halas,et al.  Theranostic nanoshells: from probe design to imaging and treatment of cancer. , 2011, Accounts of chemical research.

[55]  Rafael Yuste,et al.  Imaging Voltage in Neurons , 2011, Neuron.

[56]  Igor L. Medintz,et al.  Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. , 2010, Nature materials.

[57]  Igor L. Medintz,et al.  Surface ligand effects on metal-affinity coordination to quantum dots: implications for nanoprobe self-assembly. , 2010, Bioconjugate chemistry.

[58]  Igor L. Medintz,et al.  Delivering quantum dot-peptide bioconjugates to the cellular cytosol: escaping from the endolysosomal system. , 2010, Integrative biology : quantitative biosciences from nano to macro.

[59]  Steven Mennerick,et al.  Diverse Voltage-Sensitive Dyes Modulate GABAAReceptor Function , 2010, The Journal of Neuroscience.

[60]  Duane E. Prasuhn,et al.  Polyvalent display and packing of peptides and proteins on semiconductor quantum dots: predicted versus experimental results. , 2010, Small.

[61]  Igor L. Medintz,et al.  Resonance Energy Transfer Between Luminescent Quantum Dots and Diverse Fluorescent Protein Acceptors. , 2009, The journal of physical chemistry. C, Nanomaterials and interfaces.

[62]  Pierre Tufféry,et al.  BIOINFORMATICS ORIGINAL PAPER , 2022 .

[63]  T. Xia,et al.  Understanding biophysicochemical interactions at the nano-bio interface. , 2009, Nature materials.

[64]  Igor L. Medintz,et al.  Monitoring of enzymatic proteolysis on a electroluminescent-CCD microchip platform using quantum dot-peptide substrates , 2009 .

[65]  P. Sinko,et al.  Endocytosis and membrane potential are required for HeLa cell uptake of R.I.-CKTat9, a retro-inverso Tat cell penetrating peptide. , 2009, Molecular pharmaceutics.

[66]  Igor L. Medintz,et al.  Polyethylene glycol-based bidentate ligands to enhance quantum dot and gold nanoparticle stability in biological media , 2009, Nature Protocols.

[67]  Naomi J Halas,et al.  Nanoshell-enabled photothermal cancer therapy: impending clinical impact. , 2008, Accounts of chemical research.

[68]  Igor L. Medintz,et al.  Modular poly(ethylene glycol) ligands for biocompatible semiconductor and gold nanocrystals with extended pH and ionic stability , 2008, Journal of Materials Chemistry.

[69]  R. Nitschke,et al.  Quantum dots versus organic dyes as fluorescent labels , 2008, Nature Methods.

[70]  Igor L. Medintz,et al.  Intracellular delivery of quantum dot-protein cargos mediated by cell penetrating peptides. , 2008, Bioconjugate chemistry.

[71]  Xiaogang Peng,et al.  Bright and Water-Soluble Near IR-Emitting CdSe/CdTe/ZnSe Type-II/Type-I Nanocrystals, Tuning the Efficiency and Stability by Growth , 2008 .

[72]  Sonya Bahar,et al.  Imaging cortical electrical stimulation in vivo: fast intrinsic optical signal versus voltage-sensitive dyes. , 2008, Optics letters.

[73]  E. Giralt,et al.  Proline-rich, amphipathic cell-penetrating peptides. , 2008, Advanced drug delivery reviews.

[74]  J. Onuchic,et al.  Quantum tunneling in biological reactions: the interplay between theory and experiments , 2008 .

[75]  Igor L. Medintz,et al.  Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. , 2007, Journal of the American Chemical Society.

[76]  Igor L. Medintz,et al.  Two‐Photon Excitation of Quantum‐Dot‐Based Fluorescence Resonance Energy Transfer and Its Applications , 2007 .

[77]  Hedi Mattoussi,et al.  Capping of CdSe–ZnS quantum dots with DHLA and subsequent conjugation with proteins , 2006, Nature Protocols.

[78]  P. Kollman,et al.  Automatic atom type and bond type perception in molecular mechanical calculations. , 2006, Journal of molecular graphics & modelling.

[79]  Christophe Danelon,et al.  Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells. , 2006, Angewandte Chemie.

[80]  Igor L. Medintz,et al.  Self-assembled quantum dot-peptide bioconjugates for selective intracellular delivery. , 2006, Bioconjugate chemistry.

[81]  Igor L. Medintz,et al.  Spectrally resolved energy transfer using quantum dot donors: Ensemble and single-molecule photoluminescence studies , 2006 .

[82]  Arjun G. Yodh,et al.  Near infrared two-photon excitation cross-sections of voltage-sensitive dyes , 2005, Journal of Neuroscience Methods.

[83]  E. Nakamura,et al.  Mössbauer spectroscopy of bucky ferrocenes: lattice dynamics and motional anisotropy of the metal atom. , 2005, Inorganic chemistry.

[84]  Y. Mély,et al.  Two-color fluorescent probes for imaging the dipole potential of cell plasma membranes. , 2005, Biochimica et biophysica acta.

[85]  Preston T. Snee,et al.  Whispering‐Gallery‐Mode Lasing from a Semiconductor Nanocrystal/Microsphere Resonator Composite , 2005 .

[86]  Igor L. Medintz,et al.  Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores. , 2005, Journal of the American Chemical Society.

[87]  S. Lindgren Effects of KCl-induced depolarization on the GABA concentration in the corpus striatum and in the substantia nigra , 2005, Journal of Neural Transmission.

[88]  Igor L. Medintz,et al.  Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. , 2003, Journal of the American Chemical Society.

[89]  G. Salama,et al.  A naphthyl analog of the aminostyryl pyridinium class of potentiometric membrane dyes shows consistent sensitivity in a variety of tissue, cell, and model membrane preparations , 1992, The Journal of Membrane Biology.

[90]  Matthew B. Johnson,et al.  Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. , 2003, Journal of the American Chemical Society.

[91]  A. Rajadhyaksha,et al.  Potassium chloride depolarization mediates CREB phosphorylation in striatal neurons in an NMDA receptor-dependent manner , 2001, Brain Research.

[92]  J. Matthew Mauro,et al.  Self-Assembly of CdSe−ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein , 2000 .

[93]  Louis E. Brus,et al.  Electronic properties of single semiconductor nanocrystals : optical and electrostatic force microscopy measurements , 2000 .

[94]  Potassium chloride depolarization enhances MPP+-induced hydroxyl radical generation in the rat striatum , 2000, Brain Research.

[95]  D. Guldi Fullerenes: three dimensional electron acceptor materials , 2000 .

[96]  M. Bawendi,et al.  Quantum-confined stark effect in single CdSe nanocrystallite quantum dots , 1997, Science.

[97]  C. Deber,et al.  Threshold hydrophobicity dictates helical conformations of peptides in membrane environments. , 1998, Biopolymers.

[98]  J. Trimmer,et al.  Membrane Depolarization Inhibits Kv1.5 Voltage-gated K Channel Gene Transcription and Protein Expression in Pituitary Cells (*) , 1995, The Journal of Biological Chemistry.

[99]  R. Frostig,et al.  Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[100]  D. Epps,et al.  Characterization of the steady-state and dynamic fluorescence properties of the potential-sensitive dye bis-(1,3-dibutylbarbituric acid)trimethine oxonol (Dibac4(3)) in model systems and cells. , 1994, Chemistry and physics of lipids.

[101]  E. Giralt,et al.  CD of proline‐rich polypeptides: Application to the study of the repetitive domain of maize glutelin‐2 , 1993, Biopolymers.

[102]  R. Haddon The fullerenes: powerful carbon-based electron acceptors , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[103]  R. Haddon,et al.  The Fullerenes: The fullerenes: powerful carbon-based electron acceptors , 1993 .

[104]  M. Sternberg,et al.  Left-handed polyproline II helices commonly occur in globular proteins. , 1993, Journal of molecular biology.

[105]  J. Flippen-Anderson,et al.  Helix packing of leucine‐rich peptides: A parallel leucine ladder in the structure of Boc‐Aib‐Leu‐Aib‐Aib‐Leu‐Leu‐Leu‐Aib‐Leu‐Aib‐OMe , 1992, Proteins.

[106]  N R Kallenbach,et al.  Alpha-helix stabilization by natural and unnatural amino acids with alkyl side chains. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[107]  R. L. Baldwin,et al.  Unusually stable helix formation in short alanine-based peptides. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[108]  R. Marcus,et al.  Electron transfers in chemistry and biology , 1985 .

[109]  B Sakmann,et al.  Patch clamp techniques for studying ionic channels in excitable membranes. , 1984, Annual review of physiology.