Caspase-8 as a novel mediator linking Src kinase signaling to enhanced glioblastoma malignancy

[1]  T. Hielscher,et al.  A novel patient stratification strategy to enhance the therapeutic efficacy of dasatinib in glioblastoma. , 2021, Neuro-oncology.

[2]  D. Barilà,et al.  SRC Kinase in Glioblastoma: News from an Old Acquaintance , 2020, Cancers.

[3]  D. Green,et al.  Cancer Cells Employ Nuclear Caspase-8 to Overcome the p53-Dependent G2/M Checkpoint through Cleavage of USP28. , 2020, Molecular cell.

[4]  L. J. Lee,et al.  Phenotypic Plasticity of Invasive Edge Glioma Stem-like Cells in Response to Ionizing Radiation , 2019, Cell reports.

[5]  V. Stagni,et al.  Caspase-8: A Novel Target to Overcome Resistance to Chemotherapy in Glioblastoma , 2018, International journal of molecular sciences.

[6]  G. Ichim,et al.  Caspase-8 function, and phosphorylation, in cell migration. , 2018, Seminars in cell & developmental biology.

[7]  D. Longley,et al.  FLIP as a therapeutic target in cancer , 2018, The FEBS journal.

[8]  S. Fulda Cell death-based treatment of glioblastoma , 2018, Cell Death & Disease.

[9]  D. Centonze,et al.  Caspase-8 contributes to angiogenesis and chemotherapy resistance in glioblastoma , 2017, eLife.

[10]  Seamus J. Martin,et al.  Caspase-8 Acts in a Non-enzymatic Role as a Scaffold for Assembly of a Pro-inflammatory "FADDosome" Complex upon TRAIL Stimulation. , 2017, Molecular cell.

[11]  S. Hosseinimehr,et al.  The Role of NF-kB Inhibitors in Cell Response to Radiation. , 2016, Current medicinal chemistry.

[12]  D. Barilà,et al.  Caspase-8 expression and its Src-dependent phosphorylation on Tyr380 promote cancer cell neoplastic transformation and resistance to anoikis. , 2016, Experimental cell research.

[13]  A. Sundan,et al.  Caspase‐8 regulates the expression of pro‐ and anti‐inflammatory cytokines in human bone marrow‐derived mesenchymal stromal cells , 2016, Immunity, inflammation and disease.

[14]  M. MacFarlane,et al.  Caspase-8 tyrosine-380 phosphorylation inhibits CD95 DISC function by preventing procaspase-8 maturation and cycling within the complex , 2016, Oncogene.

[15]  Mattia D'Antonio,et al.  RAP: RNA-Seq Analysis Pipeline, a new cloud-based NGS web application , 2015, BMC Genomics.

[16]  D. Haussler,et al.  The Somatic Genomic Landscape of Glioblastoma , 2013, Cell.

[17]  Se Hoon Kim,et al.  Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. , 2013, Cancer cell.

[18]  D. Stupack Caspase-8 as a therapeutic target in cancer. , 2013, Cancer letters.

[19]  P. Benos,et al.  Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3 , 2013, Proceedings of the National Academy of Sciences.

[20]  I. Lavrik,et al.  Cellular FLICE-like inhibitory proteins (c-FLIPs): fine-tuners of life and death decisions. , 2012, Experimental cell research.

[21]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[22]  M. Ahluwalia,et al.  Targeting SRC in glioblastoma tumors and brain metastases: rationale and preclinical studies. , 2010, Cancer letters.

[23]  V. Stagni,et al.  ATM kinase activity modulates cFLIP protein levels: potential interplay between DNA damage signalling and TRAIL-induced apoptosis. , 2010, Carcinogenesis.

[24]  M. Grütter,et al.  Studies of the molecular mechanism of caspase-8 activation by solution NMR , 2010, Cell Death and Differentiation.

[25]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[26]  M. Bogyo,et al.  Caspase-8 association with the focal adhesion complex promotes tumor cell migration and metastasis. , 2009, Cancer research.

[27]  M. Grütter,et al.  Structural and biochemical studies on procaspase-8: new insights on initiator caspase activation. , 2009, Structure.

[28]  Deborah H Anderson,et al.  Caspase 8 Promotes Peripheral Localization and Activation of Rab5 , 2008, Journal of Biological Chemistry.

[29]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[30]  D. Stupack,et al.  Identification of a Critical Tyrosine Residue in Caspase 8 That Promotes Cell Migration* , 2008, Journal of Biological Chemistry.

[31]  E. Solary,et al.  Caspase-8 prevents sustained activation of NF-kappaB in monocytes undergoing macrophagic differentiation. , 2007, Blood.

[32]  M. Lenardo,et al.  Caspase-8 Regulation by Direct Interaction with TRAF6 in T Cell Receptor-Induced NF-κB Activation , 2006, Current Biology.

[33]  G. Superti-Furga,et al.  Src kinase phosphorylates Caspase‐8 on Tyr380: a novel mechanism of apoptosis suppression , 2006, The EMBO journal.

[34]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[35]  L. Salmena,et al.  Requirement for Caspase-8 in NF-κB Activation by Antigen Receptor , 2005, Science.

[36]  J. Bjorge,et al.  Selected glimpses into the activation and function of Src kinase , 2000, Oncogene.

[37]  L. Hood,et al.  Activation of the NF-κB pathway by Caspase 8 and its homologs , 2000, Oncogene.

[38]  T. Golub,et al.  Bead-based profiling of tyrosine kinase phosphorylation identifies SRC as a potential target for glioblastoma therapy , 2009, Nature Biotechnology.

[39]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[40]  L. Salmena,et al.  Requirement for caspase-8 in NF-kappaB activation by antigen receptor. , 2005, Science.

[41]  Holger Karas,et al.  TRANSFAC: a database on transcription factors and their DNA binding sites , 1996, Nucleic Acids Res..