Color Vision Variation as Evidenced by Hybrid L/M Opsin Genes in Wild Populations of Trichromatic Alouatta New World Monkeys

[1]  A. Valerio,et al.  A phylogeny of howler monkeys (Cebidae: Alouatta) based on mitochondrial, chromosomal and morphological data. , 2014, Revista de biologia tropical.

[2]  A. Bompas,et al.  Spotting fruit versus picking fruit as the selective advantage of human colour vision , 2013, i-Perception.

[3]  Jennifer Birch,et al.  Worldwide prevalence of red-green color deficiency. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[4]  A. Mikami,et al.  Gene conversion and purifying selection shape nucleotide variation in gibbon L/M opsin genes , 2011, BMC Evolutionary Biology.

[5]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[6]  S. Kawamura,et al.  Can color vision variation explain sex differences in invertebrate foraging by capuchin monkeys , 2010 .

[7]  N. Caine,et al.  A foraging advantage for dichromatic marmosets (Callithrix geoffroyi) at low light intensity , 2010, Biology Letters.

[8]  H. Innan,et al.  An explicit signature of balancing selection for color-vision variation in new world monkeys. , 2010, Molecular biology and evolution.

[9]  C. Hiramatsu,et al.  Fig Foraging by Dichromatic and Trichromatic Cebus capucinus in a Tropical Dry Forest , 2009, International Journal of Primatology.

[10]  V. Pessoa,et al.  Detection of fruit by the Cerrado's marmoset (Callithrix penicillata): modeling color signals for different background scenarios and ambient light intensities. , 2009, Journal of experimental zoology. Part A, Ecological genetics and physiology.

[11]  Cecil M. Lewis,et al.  Different selective pressures shape the molecular evolution of color vision in chimpanzee and human populations. , 2008, Molecular biology and evolution.

[12]  M. Vorobyev,et al.  Importance of Achromatic Contrast in Short-Range Fruit Foraging of Primates , 2008, PloS one.

[13]  G. H. Jacobs Primate color vision: A comparative perspective , 2008, Visual Neuroscience.

[14]  S. Yokoyama,et al.  Molecular Basis of Spectral Tuning in the Red- and Green-Sensitive (M/LWS) Pigments in Vertebrates , 2008, Genetics.

[15]  V. Pessoa,et al.  Color vision in the black howler monkey (Alouatta caraya) , 2008, Visual Neuroscience.

[16]  M. Morris,et al.  Sexual Selection and Trichromatic Color Vision in Primates: Statistical Support for the Preexisting‐Bias Hypothesis , 2007, The American Naturalist.

[17]  Amanda D. Melin,et al.  Effects of colour vision phenotype on insect capture by a free-ranging population of white-faced capuchins, Cebus capucinus , 2007, Animal Behaviour.

[18]  S. Shimojo,et al.  Bare skin, blood and the evolution of primate colour vision , 2006, Biology Letters.

[19]  S. Deeb,et al.  Genetics of variation in human color vision and the retinal cone mosaic. , 2006, Current opinion in genetics & development.

[20]  Takaaki Hayashi,et al.  Novel form of a single X-linked visual pigment gene in a unique dichromatic color-vision defect , 2006, Visual Neuroscience.

[21]  C. Hiramatsu,et al.  Color‐vision polymorphism in wild capuchins (Cebus capucinus) and spider monkeys (Ateles geoffroyi) in Costa Rica , 2005, American journal of primatology.

[22]  A. Mikami,et al.  Demonstration of a genotype–phenotype correlation in the polymorphic color vision of a non‐callitrichine New World monkey, capuchin (Cebus apella) , 2005, American journal of primatology.

[23]  A. Mikami,et al.  Advantage of dichromats over trichromats in discrimination of color‐camouflaged stimuli in nonhuman primates , 2005, American journal of primatology.

[24]  S. Deeb,et al.  The molecular basis of variation in human color vision , 2005, Clinical genetics.

[25]  A. Mikami,et al.  Identification of a protanomalous chimpanzee by molecular genetic and electroretinogram analyses , 2005, Vision Research.

[26]  C. Hiramatsu,et al.  Mutagenesis and reconstitution of middle-to-long-wave-sensitive visual pigments of New World monkeys for testing the tuning effect of residues at sites 229 and 233 , 2004, Vision Research.

[27]  M. Vorobyev Ecology and evolution of primate colour vision , 2004, Clinical & experimental optometry.

[28]  Daniel Osorio,et al.  EVOLUTION AND FUNCTION OF ROUTINE TRICHROMATIC VISION IN PRIMATES , 2003, Evolution; international journal of organic evolution.

[29]  Daniel Osorio,et al.  Evolution and selection of trichromatic vision in primates , 2003 .

[30]  A. Mikami,et al.  Behavioral evidence of color vision deficiency in a protanomalia chimpanzee (Pan troglodytes) , 2003, Primates.

[31]  M. Vorobyev,et al.  Animal colour vision — behavioural tests and physiological concepts , 2003, Biological reviews of the Cambridge Philosophical Society.

[32]  Petroc Sumner,et al.  Colors of primate pelage and skin: Objective assessment of conspicuousness , 2003, American journal of primatology.

[33]  N. Mundy,et al.  Trans‐specific evolution of opsin alleles and the maintenance of trichromatic colour vision in Callitrichine primates , 2002, Molecular ecology.

[34]  H. Komatsu,et al.  Variations in long- and middle-wavelength-sensitive opsin gene loci in crab-eating monkeys , 2002, Vision Research.

[35]  S. Yokoyama,et al.  The molecular genetics and evolution of red and green color vision in vertebrates. , 2001, Genetics.

[36]  H. Komatsu,et al.  Electroretinogram analysis of relative spectral sensitivity in genetically identified dichromatic macaques , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[37]  M. Hirai,et al.  Genomic and spectral analyses of long to middle wavelength-sensitive visual pigments of common marmoset (Callithrix jacchus). , 2001, Gene.

[38]  J. Mollon,et al.  Fruits, foliage and the evolution of primate colour vision. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[39]  N. Dominy,et al.  Ecological importance of trichromatic vision to primates , 2001, Nature.

[40]  J D Mollon,et al.  Catarrhine photopigments are optimized for detecting targets against a foliage background. , 2000, The Journal of experimental biology.

[41]  H. Komatsu,et al.  Dichromatism in macaque monkeys. , 1999, Nature.

[42]  J. Mollon,et al.  The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates. , 1999, Genome research.

[43]  D. Hewett‐Emmett,et al.  Origins and antiquity of X-linked triallelic color vision systems in New World monkeys. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[44]  J. Mollon,et al.  Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey , 1998, Vision Research.

[45]  S. Yokoyama,et al.  The "five-sites" rule and the evolution of red and green color vision in mammals. , 1998, Molecular biology and evolution.

[46]  T.D.B. Yuen,et al.  Colour Cues for Leaf Food Selection by Long-Tailed Macaques (Macaca fascicularis) with a New Suggestion for the Evolution of Trichromatic Colour Vision , 1998, Folia Primatologica.

[47]  S. Kawamura,et al.  Functional characterization of visual and nonvisual pigments of American chameleon (Anolis carolinensis) , 1998, Vision Research.

[48]  T. Strachan,et al.  Human Molecular Genetics 2 , 1997 .

[49]  D. Hewett‐Emmett,et al.  Origin and Molecular Evolution of the X-linked Duplicate Color Vision Genes in Howler Monkeys , 1997 .

[50]  Jay Neitz,et al.  Trichromatic colour vision in New World monkeys , 1996, Nature.

[51]  W. Li,et al.  Gene conversion and natural selection in the evolution of X-linked color vision genes in higher primates. , 1996, Molecular biology and evolution.

[52]  S. Shyue,et al.  Intronic gene conversion in the evolution of human X-linked color vision genes. , 1994, Molecular biology and evolution.

[53]  J. Winderickx,et al.  Haplotype diversity in the human red and green opsin genes: evidence for frequent sequence exchange in exon 3. , 1993, Human molecular genetics.

[54]  J. Mollon,et al.  Dichromats detect colour-camouflaged objects that are not detected by trichromats , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[55]  G H Jacobs,et al.  Spectral tuning of pigments underlying red-green color vision. , 1991, Science.

[56]  H. Khorana,et al.  Expression of a bovine rhodopsin gene in Xenopus oocytes: demonstration of light-dependent ionic currents. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[57]  J. Mollon,et al.  Polymorphism of photopigments in the squirrel monkey: a sixth phenotype , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[58]  C. Hiramatsu,et al.  Polymorphic Color Vision in Primates: Evolutionary Considerations , 2012 .

[59]  Yasuhiro Go,et al.  Post-Genome Biology of Primates , 2012, Primatology Monographs.

[60]  A. Oskooi Molecular Evolution and Phylogenetics , 2008 .

[61]  E. Bermingham,et al.  Molecular systematics and biogeography of the Neotropical monkey genus, Alouatta. , 2003, Molecular phylogenetics and evolution.

[62]  Nathaniel J Dominy,et al.  Historical contingency in the evolution of primate color vision. , 2003, Journal of human evolution.

[63]  G. H. Jacobs,et al.  The prevalence of defective color vision in Old World monkeys and apes , 2001 .