Packing Chromatic Number of Subdivisions of Cubic Graphs

A packing k-coloring of a graph G is a partition of V(G) into sets $$V_1,\ldots ,V_k$$V1,…,Vk such that for each $$1\le i\le k$$1≤i≤k the distance between any two distinct $$x,y\in V_i$$x,y∈Vi is at least $$i+1$$i+1. The packing chromatic number, $$\chi _p(G)$$χp(G), of a graph G is the minimum k such that G has a packing k-coloring. For a graph G, let D(G) denote the graph obtained from G by subdividing every edge. The questions on the value of the maximum of $$\chi _p(G)$$χp(G) and of $$\chi _p(D(G))$$χp(D(G)) over the class of subcubic graphs G appear in several papers. Gastineau and Togni asked whether $$\chi _p(D(G))\le 5$$χp(D(G))≤5 for any subcubic G, and later Brešar, Klavžar, Rall and Wash conjectured this, but no upper bound was proved. Recently the authors proved that $$\chi _p(G)$$χp(G) is not bounded in the class of subcubic graphs G. In contrast, in this paper we show that $$\chi _p(D(G))$$χp(D(G)) is bounded in this class, and does not exceed 8.

[1]  Éric Sopena,et al.  On the packing coloring of undirected and oriented generalized theta graphs , 2016, Australas. J Comb..

[2]  Sandi Klavzar,et al.  Packing chromatic number under local changes in a graph , 2017, Discret. Math..

[3]  Wayne Goddard,et al.  Braodcast Chromatic Numbers of Graphs , 2008, Ars Comb..

[4]  Bostjan Bresar,et al.  An infinite family of subcubic graphs with unbounded packing chromatic number , 2018, Discret. Math..

[5]  Jirí Fiala,et al.  The packing chromatic number of infinite product graphs , 2009, Eur. J. Comb..

[6]  Olivier Togni,et al.  Subdivision into i-packings and S-packing chromatic number of some lattices , 2015, Ars Math. Contemp..

[7]  Danilo Korze,et al.  On the packing chromatic number of square and hexagonal lattice , 2014, Ars Math. Contemp..

[8]  Nicolas Gastineau,et al.  Dichotomies properties on computational complexity of S-packing coloring problems , 2013, Discret. Math..

[9]  Olivier Togni,et al.  On packing chromatic number of subcubic outerplanar graphs , 2019, Discret. Appl. Math..

[10]  Sandi Klavžar,et al.  Packing chromatic number, $$\mathbf (1, 1, 2, 2) $$(1,1,2,2)-colorings, and characterizing the Petersen graph , 2017 .

[11]  Alexandr V. Kostochka,et al.  Packing chromatic number of cubic graphs , 2018, Discret. Math..

[12]  Wayne Goddard,et al.  A note on S-packing colorings of lattices , 2014, Discret. Appl. Math..

[13]  Douglas F. Rall,et al.  Packing chromatic number, $(1,1,2,2)$-colorings, and characterizing the Petersen graph , 2016 .

[14]  Olivier Togni,et al.  S-packing colorings of cubic graphs , 2016, Discret. Math..

[15]  Sandi Klavzar,et al.  Packing Chromatic Number of Base-3 Sierpiński Graphs , 2016, Graphs Comb..

[16]  Sandi Klavžar,et al.  Packing chromatic number versus chromatic and clique number , 2017, 1707.04910.

[17]  Christian Sloper AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 29 (2004), Pages 309–321 An eccentric coloring of trees , 2022 .

[18]  W. Goddard,et al.  The S-packing chromatic number of a graph , 2012, Discuss. Math. Graph Theory.

[19]  Sandi Klavzar,et al.  On the packing chromatic number of Cartesian products, hexagonal lattice, and trees , 2007, Electron. Notes Discret. Math..

[20]  Jirí Fiala,et al.  Complexity of the Packing Coloring Problem for Trees , 2008, WG.

[21]  Mario Valencia-Pabon,et al.  The packing chromatic number of hypercubes , 2015, Discret. Appl. Math..

[22]  Éric Sopena,et al.  Packing Coloring of Some Undirected and Oriented Coronae Graphs , 2017, Discuss. Math. Graph Theory.

[23]  Gabriela R. Argiroffo,et al.  The packing coloring problem for lobsters and partner limited graphs , 2014, Discret. Appl. Math..

[24]  Stanislav Jendrol',et al.  Facial packing edge-coloring of plane graphs , 2016, Discret. Appl. Math..