Controllable peptide-dendron self-assembly: interconversion of nanotubes and fibrillar nanostructures.

Roll up: A peptide-dendron hybrid (PDH) is capable of self-assembling into either a soluble nanotube or an amyloid-like fibrillar network. The structures interconvert on adjusting the salt concentration or pH value. Their hydrophobic interfaces efficiently encapsulate hydrophobic molecules in water which can then be released by lowering the pH value.

[1]  M. R. Imam,et al.  Hollow spherical supramolecular dendrimers. , 2008, Journal of the American Chemical Society.

[2]  Lesley W Chow,et al.  Growth factor delivery from self-assembling nanofibers to facilitate islet transplantation. , 2008, Transplantation.

[3]  S. King,et al.  Self-assembly of Peptide nanotubes in an organic solvent. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[4]  I. Lascu,et al.  On the binding of Thioflavin-T to HET-s amyloid fibrils assembled at pH 2. , 2008, Journal of structural biology.

[5]  Izhack Cherny,et al.  Amyloide: nicht nur pathologische Substanzen, sondern auch geordnete Nanomaterialien , 2008 .

[6]  Ehud Gazit,et al.  Amyloids: not only pathological agents but also ordered nanomaterials. , 2008, Angewandte Chemie.

[7]  Andrew M. Smith,et al.  Designing peptide based nanomaterials. , 2008, Chemical Society reviews.

[8]  M. Drew,et al.  Dipeptide Nanotubes, with N-Terminally Located ω-Amino Acid Residues, That are Stable Proteolytically, Thermally, and Over a Wide Range of pH , 2008 .

[9]  Michele Vendruscolo,et al.  Role of Intermolecular Forces in Defining Material Properties of Protein Nanofibrils , 2007, Science.

[10]  P. Das,et al.  Structure and properties of low molecular weight amphiphilic peptide hydrogelators. , 2007, Journal of Physical Chemistry B.

[11]  E. Bakota,et al.  Self-assembly of multidomain peptides: balancing molecular frustration controls conformation and nanostructure. , 2007, Journal of the American Chemical Society.

[12]  Sergei A Vinogradov,et al.  Selective transport of water mediated by porous dendritic dipeptides. , 2007, Journal of the American Chemical Society.

[13]  V. Conticello,et al.  Macroscale assembly of peptide nanotubes. , 2007, Chemical communications.

[14]  Y. Lim,et al.  Cell-penetrating-peptide-coated nanoribbons for intracellular nanocarriers. , 2007, Angewandte Chemie.

[15]  K. Ewert,et al.  Hierarchical bionanotubes formed by the self assembly of microtubules with cationic membranes or polypeptides , 2007 .

[16]  I. Hamley,et al.  Self-organisation in the assembly of gels from mixtures of different dendritic peptide building blocks. , 2007, Chemistry.

[17]  J. Parquette,et al.  Coupled Conformational Equilibria in β-Sheet Peptide−Dendron Conjugates , 2007 .

[18]  Jennifer A. Craig,et al.  Self-assembly and applications of biomimetic and bioactive peptide-amphiphiles. , 2006, Soft matter.

[19]  Michael H. Hecht,et al.  Generic hydrophobic residues are sufficient to promote aggregation of the Alzheimer's Aβ42 peptide , 2006, Proceedings of the National Academy of Sciences.

[20]  Xiaojun Zhao,et al.  Molecular designer self-assembling peptides. , 2006, Chemical Society reviews.

[21]  D. Otzen,et al.  AFM study of glucagon fibrillation via oligomeric structures resulting in interwoven fibrils , 2006, Nanotechnology.

[22]  H. Börner,et al.  Switch-peptides to trigger the peptide guided assembly of poly(ethylene oxide)-peptide conjugates into tape structures. , 2006, Journal of the American Chemical Society.

[23]  J. Hartgerink,et al.  Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. , 2006, Journal of the American Chemical Society.

[24]  D. Berti Self assembly of biologically inspired amphiphiles , 2006 .

[25]  Felix Kratz,et al.  Polymer therapeutics: concepts and applications. , 2006, Angewandte Chemie.

[26]  R. Haag,et al.  Polymere Therapeutika: Konzepte und Anwendungen , 2006 .

[27]  R. Tycko,et al.  Molecular structure of amyloid fibrils: insights from solid-state NMR , 2006, Quarterly Reviews of Biophysics.

[28]  R. Riek,et al.  3D structure of Alzheimer's amyloid-β(1–42) fibrils , 2005 .

[29]  S. Stupp,et al.  Encapsulation of pyrene within self-assembled peptide amphiphile nanofibers , 2005 .

[30]  C. Ionescu-Zanetti,et al.  Mechanism of thioflavin T binding to amyloid fibrils. , 2005, Journal of structural biology.

[31]  S. Matsumura,et al.  Construction of biotinylated peptide nanotubes for arranging proteins. , 2005, Molecular bioSystems.

[32]  G. Fleming,et al.  Synthetic micelle sensitive to IR light via a two-photon process. , 2005, Journal of the American Chemical Society.

[33]  Takatoshi Kinoshita,et al.  Dynamic reassembly of peptide RADA16 nanofiber scaffold. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[34]  T. Fukushima,et al.  Self-Assembled Hexa-peri-hexabenzocoronene Graphitic Nanotube , 2004, Science.

[35]  F. Heitz,et al.  High pressure induces scrapie-like prion protein misfolding and amyloid fibril formation. , 2004, Biochemistry.

[36]  J. V. van Hest,et al.  Peptide based amphiphiles. , 2004, Chemical Society reviews.

[37]  Georg E. Schulz,et al.  The Structure of a Mycobacterial Outer-Membrane Channel , 2004, Science.

[38]  Bruno Robert,et al.  Biomimetic organization: Octapeptide self-assembly into nanotubes of viral capsid-like dimension , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[39]  L. Regan,et al.  A general model for amyloid fibril assembly based on morphological studies using atomic force microscopy. , 2003, Biophysical journal.

[40]  V. Conticello,et al.  Exploiting amyloid fibril lamination for nanotube self-assembly. , 2003, Journal of the American Chemical Society.

[41]  Meital Reches,et al.  Casting Metal Nanowires Within Discrete Self-Assembled Peptide Nanotubes , 2003, Science.

[42]  S. Zimmerman,et al.  A new route to organic nanotubes from porphyrin dendrimers. , 2003, Angewandte Chemie.

[43]  R. Tycko Insights into the amyloid folding problem from solid-state NMR. , 2003, Biochemistry.

[44]  C. Ionescu-Zanetti,et al.  Surface-catalyzed Amyloid Fibril Formation* , 2002, The Journal of Biological Chemistry.

[45]  Shuguang Zhang,et al.  Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Ehud Gazit,et al.  A possible role for π‐stacking in the self‐assembly of amyloid fibrils , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[47]  A. N. Semenov,et al.  Hierarchical self-assembly of chiral rod-like molecules as a model for peptide β-sheet tapes, ribbons, fibrils, and fibers , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[48]  S. Gellman,et al.  Interstrand side chain--side chain interactions in a designed beta-hairpin: significance of both lateral and diagonal pairings. , 2001, Journal of the American Chemical Society.

[49]  S. Brahmachari,et al.  Peptide models for inherited neurodegenerative disorders: conformation and aggregation properties of long polyglutamine peptides with and without interruptions , 1999, FEBS letters.

[50]  T. Benzinger,et al.  C-Terminal PEG Blocks the Irreversible Step in β-Amyloid(10-35) Fibrillogenesis , 1998 .

[51]  Y. Hisaeda,et al.  Specific molecular recognition by chiral cage-type cyclophanes having leucine, valine, and alanine residue , 1995 .

[52]  Juan R. Granja,et al.  Self-assembling organic nanotubes based on a cyclic peptide architecture , 1993, Nature.

[53]  Hajime Okamoto,et al.  Molecular design and morphology of peptide nanotubes: Towards the novel drug delivery materials , 2005 .

[54]  Julian Vincent,et al.  The mechanical properties of biological materials , 1979 .