Halo occupation numbers and galaxy bias

We propose a heuristic model that displays the main features of realistic theories for galaxy bias. We first show that the low-order clustering statistics of the dark-matter distribution depend almost entirely on the locations and density profiles of dark-matter haloes. The quasi-linear mass correlations are in fact reproduced well by a model of independent randomly-placed haloes. The distribution of galaxies within the halo density field depends on: (i) the efficiency of galaxy formation, as manifested by the halo occupation number– the number of galaxies brighter than some sample limit contained in a halo of a given mass; (ii) the location of these galaxies within their halo. The first factor is constrained by the empirical luminosity function of groups. For the second factor, we assume that one galaxy marks the halo centre, with any remaining galaxies acting as satellites that trace the halo mass. This second assumption is essential if small-scale galaxy correlations are to remain close to a single power law, rather than flattening in the same way as the correlations of the overall density field. These simple assumptions amount to a recipe for non-local bias, in which the probability of finding a galaxy is not a simple function of its local mass density. We have applied this prescription to some CDM models of current interest, and find that the predictions are close to the observed galaxy correlations for a flat Ω=0.3 model (ΛCDM), but not for an Ω=1 model with the same power spectrum (τCDM). This is an inevitable consequence of cluster normalization for the power spectra: cluster-scale haloes of given mass have smaller core radii for high Ω, and hence display enhanced small-scale clustering. Finally, the pairwise velocity dispersion of galaxies in the ΛCDM model is lower than that of the mass, allowing cluster-normalized models to yield a realistic Mach number for the peculiar velocity field. This is largely due to the strong variation of galaxy-formation efficiency with halo mass that is required in this model.

[1]  J. Einasto Large scale structure , 2000, astro-ph/0011332.

[2]  Chung-Pei Ma,et al.  Halo Profiles and the Nonlinear Two- and Three-Point Correlation Functions of Cosmological Mass Density , 2000, The Astrophysical journal.

[3]  Denmark,et al.  The nature of galaxy bias and clustering , 1999, astro-ph/9903343.

[4]  Paul J. Steinhardt,et al.  Cosmic Concordance and Quintessence , 1999, astro-ph/9901388.

[5]  C. Baugh,et al.  The dependence of velocity and clustering statistics on galaxy properties , 1999, astro-ph/9910488.

[6]  N. Grogin,et al.  An Imaging and Spectroscopic Survey of Galaxies within Prominent Nearby Voids. I. The Sample and Luminosity Distribution , 1999, astro-ph/9910073.

[7]  Korea,et al.  The Parker Instability in a Thick Galactic Gaseous Disk. I. Linear Stability Analysis and Nonlinear Final Equilibria , 1999, astro-ph/9910364.

[8]  A. Fabian,et al.  A Rossi X-Ray Timing Explorer Study of M87 and the Core of the Virgo Cluster , 1999 .

[9]  J. Peacock,et al.  A Simulation of Galaxy Formation and Clustering , 1999, astro-ph/9905160.

[10]  J. Peacock,et al.  Overmerging and mass-to-light ratios in phenomenological galaxy formation models , 1999, astro-ph/9904274.

[11]  O. Lahav,et al.  The 2dF Galaxy Redshift Survey: spectral types and luminosity functions , 1999, astro-ph/9903456.

[12]  G. Lake,et al.  Cold collapse and the core catastrophe , 1999, astro-ph/9903164.

[13]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999, astro-ph/9901122.

[14]  Chung-Pei Ma Redshift Evolution of the Nonlinear Two-Point Correlation Function , 1998, astro-ph/9808130.

[15]  G. Kauffmann,et al.  Clustering of galaxies in a hierarchical universe - I. Methods and results at z=0 , 1998, astro-ph/9805283.

[16]  Stefan Gottloeber,et al.  Galaxies in N-Body Simulations: Overcoming the Overmerging Problem , 1997, astro-ph/9708191.

[17]  U. California,et al.  Semi-analytic modelling of galaxy formation: The local Universe , 1998, astro-ph/9802268.

[18]  A. Szalay,et al.  Can Baryonic Features Produce the Observed 100 [CLC][ITAL]h[/ITAL][/CLC][TSUP]−1[/TSUP] M[CLC]pc[/CLC] Clustering? , 1998 .

[19]  G. Lake,et al.  Dark matter haloes within clusters , 1998, astro-ph/9801192.

[20]  G. Kochanski,et al.  Detailed Mass Map of CL 0024+1654 from Strong Lensing , 1998, astro-ph/9801193.

[21]  A. Heavens,et al.  Eulerian bias and the galaxy density field , 1997, astro-ph/9708031.

[22]  H. M. P. Couchman,et al.  Evolution of Structure in Cold Dark Matter Universes , 1997, astro-ph/9709010.

[23]  Y. Jing,et al.  Spatial Correlation Function and Pairwise Velocity Dispersion of Galaxies: Cold Dark Matter Models versus the Las Campanas Survey , 1997, astro-ph/9707106.

[24]  M. Geller,et al.  Groups of Galaxies in the Northern CfA Redshift Survey , 1997 .

[25]  The evolution of galaxy clustering , 1996, astro-ph/9608151.

[26]  B. Jain,et al.  The non-linear correlation function and density profiles of virialized haloes , 1996, astro-ph/9602103.

[27]  G. Kauffmann,et al.  Galaxy formation and large scale bias , 1995, astro-ph/9512009.

[28]  J. Holtzman,et al.  Small-Scale Power Spectrum and Correlations in Lambda + Cold Dark Matter Models , 1996 .

[29]  J. Peacock,et al.  Non-linear evolution of cosmological power spectra , 1996, astro-ph/9603031.

[30]  S. Maddox,et al.  The APM Galaxy Survey — III. An analysis of systematic errors in the angular correlation function and cosmological implications , 1996, astro-ph/9601103.

[31]  S. Cole,et al.  Using the evolution of clusters to constrain Omega , 1996, astro-ph/9601088.

[32]  A. Liddle,et al.  The cluster abundance in flat and open cosmologies , 1995, astro-ph/9511007.

[33]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[34]  S. Maddox,et al.  The Stromlo-APM Redshift Survey II. Variation of Galaxy Clustering with Morphology and Luminosity , 1994 .

[35]  C. Frenk,et al.  A recipe for galaxy formation , 1994, astro-ph/9402001.

[36]  J. A. PeacockS.J. Dodds,et al.  Reconstructing the linear power spectrum of cosmological mass fluctuations , 1993, astro-ph/9311057.

[37]  G. Kauffmann,et al.  The formation and evolution of galaxies within merging dark matter haloes , 1993 .

[38]  P. Coles Galaxy formation with a local bias , 1993 .

[39]  S. White,et al.  The Correlation function of clusters of galaxies and the amplitude of mass fluctuations in the Universe , 1993, astro-ph/9602052.

[40]  S. White,et al.  Galaxy groups: abundance by luminosity and by velocity dispersion , 1993 .

[41]  J. R. Bond,et al.  Excursion set mass functions for hierarchical Gaussian fluctuations , 1991 .

[42]  A. Hamilton,et al.  Reconstructing the primordial spectrum of fluctuations of the universe from the observed nonlinear clustering of galaxies , 1991 .

[43]  Keith A. Arnaud,et al.  A measurement of the mass fluctuation spectrum from the cluster X-ray temperature function , 1991 .

[44]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[45]  J. Ostriker,et al.  The Mach number of the cosmic flow: a critical test for current theories , 1990 .

[46]  S. Cole,et al.  Biased clustering in the cold dark matter cosmogony , 1989 .

[47]  Richard S. Ellis,et al.  Analysis of a complete galaxy redshift survey – II. The field-galaxy luminosity function , 1988 .

[48]  M. Rees,et al.  Physical mechanisms for biased galaxy formation , 1987, Nature.

[49]  N. Kaiser On the spatial correlations of Abell clusters , 1984 .

[50]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[51]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[52]  Jerzy Neyman,et al.  On the Spatial Distribution of Galaxies: a Specific Model. , 1953 .