Effect of Gas-Shielded Flux Cored Arc Welding Parameters on Weld Width and Tensile Properties of Weld Metal in a Low Carbon Steel

[1]  Prasad K. Yarlagadda,et al.  A study on prediction of bead height in robotic arc welding using a neural network , 2002 .

[2]  P. Thomson,et al.  FCAW process to avoid the use of post weld heat treatment , 2006 .

[3]  Davi Sampaio Correia,et al.  Comparison between genetic algorithms and response surface methodology in GMAW welding optimization , 2005 .

[4]  B. Guha,et al.  Analysing the influences of weld size on fatigue life prediction of FCAW cruciform joints by strain energy concept , 1999 .

[5]  N. Murugan,et al.  Optimization of weld bead geometry for stainless steel claddings deposited by FCAW , 2007 .

[6]  Ill-Soo Kim,et al.  A study on relationship between process variables and bead penetration for robotic CO2 arc welding , 2003 .

[7]  Y. S. Tarng,et al.  Process parameter selection for optimizing the weld pool geometry in the tungsten inert gas welding of stainless steel , 2002 .

[8]  M.S.J. Hashmi,et al.  Optimizing the laser-welded butt joints of medium carbon steel using RSM , 2005 .

[9]  Yu Xue,et al.  Fuzzy regression method for prediction and control the bead width in the robotic arc-welding process , 2005 .

[10]  T. Kannan,et al.  Effect of flux cored arc welding process parameters on duplex stainless steel clad quality , 2006 .

[11]  Ill-Soo Kim,et al.  An investigation into an intelligent system for predicting bead geometry in GMA welding process , 2005 .

[12]  R. Scott Funderburk,et al.  Key Concepts in Welding Engineering , 1999 .

[13]  M. Hashmi,et al.  Effect of laser welding parameters on the heat input and weld-bead profile , 2005 .