Orbit Computation for Atomically Generated Subgroups of Isometries of Zn

Isometries and their induced symmetries are ubiquitous in the world. Taking a computational perspective, this paper considers isometries of $\mathbb{Z}^n$ (since values are discrete in digital computers), and tackles the problem of orbit computation under various isometry subgroup actions on $\mathbb{Z}^n$. Rather than just conceptually, we aim for a practical algorithm that can partition any finite subset of $\mathbb{Z}^n$ based on the orbit relation. In this paper, instead of all subgroups of isometries, we focus on a special class of subgroups, namely atomically generated subgroups. This newly introduced notion is key to inheriting the semidirect-product structure from the whole group of isometries, and in turn, the semidirect-product structure is key to our proposed algorithm for efficient orbit computation.

[1]  L. Bieberbach,et al.  Über die Bewegungsgruppen der Euklidischen Räume , 1911 .

[2]  Paul Thagard,et al.  Epistemology and cognition , 1991 .

[3]  Lav R. Varshney,et al.  A Group-Theoretic Approach to Computational Abstraction: Symmetry-Driven Hierarchical Clustering , 2018, J. Mach. Learn. Res..

[4]  P. Lockhart INTRODUCTION TO GEOMETRY , 2007 .

[5]  Çetin Kaya Koç,et al.  A Fast Algorithm for Gaussian Elimination over GF(2) and Its Implementation on the GAPP , 1991, J. Parallel Distributed Comput..

[6]  E. Noether,et al.  Der Endlichkeitssatz der Invarianten endlicher Gruppen , 1915 .

[7]  S. Ullman The interpretation of structure from motion , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[8]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[9]  Brian H. Smith,et al.  Hyperbolic geometry of the olfactory space , 2018, Science Advances.

[10]  Katherine D. Kinzler,et al.  Core knowledge. , 2007, Developmental science.

[11]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[12]  Stefano Stramigioli,et al.  Geometry and Screw Theory for Robotics , 2001 .

[13]  K. Hashiguchi Equivalence , 2018, Fundamentals of Abstract Analysis.

[14]  Dmitri Tymoczko A Geometry of Music: Harmony and Counterpoint in the Extended Common Practice , 2011 .

[15]  Harm Derksen,et al.  Computational Invariant Theory , 2002 .

[16]  Derek F. Holt,et al.  A practical model for computation with matrix groups , 2015, J. Symb. Comput..

[17]  J. L. Britton The Word Problem for Groups , 1958 .

[18]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[19]  W. W. Boone,et al.  THE WORD PROBLEM. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Brian S. Clark,et al.  Single-Cell RNA-Seq Analysis of Retinal Development Identifies NFI Factors as Regulating Mitotic Exit and Late-Born Cell Specification , 2019, Neuron.

[21]  G. Langlet,et al.  International Tables for Crystallography , 2002 .

[22]  Hua Li,et al.  On a Connection between Information and Group Lattices , 2011, Entropy.