Parameter Identifiability in PDE Models of Fluorescence Recovery After Photobleaching.

Identifying unique parameters for mathematical models describing biological data can be challenging and often impossible. Parameter identifiability for partial differential equations models in cell biology is especially difficult given that many established \textit{in vivo} measurements of protein dynamics average out the spatial dimensions. Here, we are motivated by recent experiments on the binding dynamics of the RNA-binding protein PTBP3 based on fluorescence recovery after photobleaching (FRAP) measurements in RNP granules of frog oocytes. We consider a simple reaction-diffusion model of the protein dynamics, and show the limitations of current methods of structural and practical parameter identifiability for this model and data. We propose a pipeline for assessing parameter identifiability and for learning parameter combinations based on re-parameterization and profile likelihoods analysis. We show that this method is able to recover parameter combinations for synthetic FRAP datasets and investigate its application to real experimental data.

[1]  A. Kenworthy What's past is prologue: FRAP keeps delivering 50 years later. , 2023, Biophysical journal.

[2]  S. Lawley,et al.  Inferences from FRAP data are model dependent: a subdiffusive analysis. , 2022, Biophysical journal.

[3]  K. Mowry,et al.  Multivalent interactions with RNA drive recruitment and dynamics in biomolecular condensates in Xenopus oocytes , 2022, iScience.

[4]  D. Kirschner,et al.  Structural identifiability analysis of age-structured PDE epidemic models , 2022, Journal of Mathematical Biology.

[5]  Samantha P. Jeschonek,et al.  L-bodies are RNA–protein condensates driving RNA localization in Xenopus oocytes , 2021, Molecular biology of the cell.

[6]  H. T. Banks,et al.  A sensitivity matrix based methodology for inverse problem formulation , 2020, 2004.06831.

[7]  Ruth E. Baker,et al.  Practical parameter identifiability for spatio-temporal models of cell invasion , 2020, Journal of the Royal Society Interface.

[8]  James A. Gagnon,et al.  Analysis of Active Transport by Fluorescence Recovery after Photobleaching. , 2017, Biophysical journal.

[9]  James A. Gagnon,et al.  Using in vivo imaging to measure RNA mobility in Xenopus laevis oocytes. , 2016, Methods.

[10]  Marisa C Eisenberg,et al.  Determining identifiable parameter combinations using subset profiling. , 2014, Mathematical biosciences.

[11]  Keegan E. Hines,et al.  Determination of parameter identifiability in nonlinear biophysical models: A Bayesian approach , 2014, The Journal of general physiology.

[12]  Suzanne L Robertson,et al.  Identifiability and estimation of multiple transmission pathways in cholera and waterborne disease. , 2013, Journal of theoretical biology.

[13]  Marisa C. Eisenberg,et al.  Input-output equivalence and identifiability: some simple generalizations of the differential algebra approach , 2013 .

[14]  Edmund J Crampin,et al.  MCMC can detect nonidentifiable models. , 2012, Biophysical journal.

[15]  Charless C. Fowlkes,et al.  Classification of grass pollen through the quantitative analysis of surface ornamentation and texture , 2013 .

[16]  J. Banga,et al.  Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods , 2011, PloS one.

[17]  Xiaohua Xia,et al.  On Identifiability of Nonlinear ODE Models and Applications in Viral Dynamics , 2011, SIAM Rev..

[18]  M. Rudemo,et al.  Straightforward FRAP for quantitative diffusion measurements with a laser scanning microscope. , 2010, Optics express.

[19]  T. Maiwald,et al.  BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm382 Systems biology Data-based identifiability analysis of non-linear dynamical models , 2022 .

[20]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[21]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[22]  R. Pego,et al.  Analysis of binding reactions by fluorescence recovery after photobleaching. , 2004, Biophysical journal.

[23]  S. Cox,et al.  Exponential Time Differencing for Stiff Systems , 2002 .

[24]  M J Chappell,et al.  Extensions to a procedure for generating locally identifiable reparameterisations of unidentifiable systems. , 2000, Mathematical biosciences.

[25]  Lennart Ljung,et al.  On global identifiability for arbitrary model parametrizations , 1994, Autom..

[26]  C. Cobelli,et al.  Parameter and structural identifiability concepts and ambiguities: a critical review and analysis. , 1980, The American journal of physiology.

[27]  J. Reid,et al.  Structural identifiability in linear time invariant systems , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.

[28]  Claudio Cobelli,et al.  Global identifiability of nonlinear models of biological systems , 2001, IEEE Transactions on Biomedical Engineering.

[29]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .