Design of a Non-Foster Actively Loaded SRR and Application in Metamaterial-Inspired Components

In this paper, we investigate on the use of non-Foster active elements to increase the operation bandwidth of a split-ring resonator (SRR) for possible application in metamaterial-inspired components. First, we design the circuit topology of the active load required to compensate the intrinsic reactance of the SRR and get a broadband response. Then, we show that the same procedure can be successfully applied to the case of a SRR-based monopole antenna and, in principle, to any metamaterial-inspired device employing SRRs. Finally, integrating an electromagnetic and a circuit simulator, we propose a possible realistic implementation of the active load, based on the employment of commercially available circuit elements. The obtained results (seven times improvement of the impedance bandwidth of the SRR-based monopole antenna) prove that non-Foster active loads can be successfully used to overcome the inherent narrow-band operation of SRR-based passive metamaterials and metamaterial-inspired components. The implementation issues related to circuit element dispersion, parasitic effects, and stability of the active circuit are fully considered in the proposed design.

[1]  Ekmel Ozbay,et al.  Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture. , 2009, Physical review letters.

[2]  Stephen E. Sussman-Fort,et al.  Gyrator‐based biquad filters and negative impedance converters for microwaves , 1998 .

[3]  S. Tretyakov,et al.  Veselago Materials: What is Possible and Impossible about the Dispersion of the Constitutive Parameters , 2007, IEEE Antennas and Propagation Magazine.

[4]  A. Toscano,et al.  Design of Spiral and Multiple Split-Ring Resonators for the Realization of Miniaturized Metamaterial Samples , 2007, IEEE Transactions on Antennas and Propagation.

[5]  K. Balmain,et al.  Negative Refraction Metamaterials: Fundamental Principles and Applications , 2005 .

[6]  F. Medina,et al.  Comparative analysis of edge- and broadside- coupled split ring resonators for metamaterial design - theory and experiments , 2003 .

[7]  Yang Hao,et al.  Stability of active magnetoinductive metamaterials , 2010 .

[8]  R. M. Foster,et al.  A reactance theorem , 1924 .

[9]  James T. Aberle,et al.  Antennas with Non-Foster Matching Networks , 2007, Antennas with Non-Foster Matching Networks.

[10]  C. Di Nallo,et al.  Wideband antenna using non-foster loading elements , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[11]  Wai-Kai Chen,et al.  The circuits and filters handbook , 2009 .

[12]  Ekmel Ozbay,et al.  Enhanced transmission through a sub-wavelength aperture: resonant approaches employing metamaterials , 2009 .

[13]  G. V. Eleftheriades,et al.  Antenna applications of non-Foster elements , 2012, 2012 IEEE International Workshop on Antenna Technology (iWAT).

[14]  Francisco Medina,et al.  Role of bianisotropy in negative permeability and left-handed metamaterials , 2002 .

[15]  Ekmel Ozbay,et al.  Enhanced transmission through a sub-wavelength aperture using single negative metamaterials , 2009 .

[16]  Herbert O. Moser,et al.  Subwavelength imaging in a cylindrical hyperlens based on S-string resonators , 2011 .

[17]  S. Tretyakov,et al.  Strong spatial dispersion in wire media in the very large wavelength limit , 2002, cond-mat/0211204.

[18]  J.G. Linvill,et al.  Transistor Negative-Impedance Converters , 1953, Proceedings of the IRE.

[19]  Filiberto Bilotti,et al.  An SRR based microwave absorber , 2006 .

[20]  D. Segovia-Vargas,et al.  Stability of Non-Foster Reactive Elements for Use in Active Metamaterials and Antennas , 2012, IEEE Transactions on Antennas and Propagation.

[21]  D. W. van der Weide,et al.  Nonlinear magnetic metamaterials. , 2008, Optics express.

[22]  Peng Jin,et al.  Introduction of internal matching circuit to increase the bandwidth of a metamaterial-inspired efficient electrically small antenna , 2008, 2008 IEEE Antennas and Propagation Society International Symposium.

[23]  Vincent Fusco,et al.  Electromagnetic Metamaterials: Physics and Engineering Explorations (Engheta, N. and Ziolkowski, R.W.; 2006) [Book Review] , 2007, IEEE Antennas and Propagation Magazine.

[24]  D.H. Werner,et al.  Active negative impedance loaded EBG structures for the realization of ultra-wideband Artificial Magnetic Conductors , 2003, IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450).

[25]  E. Y. Yuksel,et al.  Investigation of a Compensated Rectangular Microstrip Antenna With Negative Capacitor and Negative Inductor for Bandwidth Enhancement , 2007, IEEE Transactions on Antennas and Propagation.

[26]  F. Medina,et al.  A new LC series element for compact bandpass filter design , 2004, IEEE Microwave and Wireless Components Letters.

[27]  L. Sevgi,et al.  Metamaterials: Definitions, properties, applications, and FDTD‐based modeling and simulation (Invited paper) , 2012 .

[28]  R. W. Jackson,et al.  Criteria for the onset of oscillation in microwave circuits , 1992 .

[29]  Ekmel Ozbay,et al.  Optimization and tunability of deep subwavelength resonators for metamaterial applications: complete enhanced transmission through a subwavelength aperture. , 2009, Optics express.

[30]  R. W. Jackson,et al.  Comments on "Criteria for the onset of oscillation in microwave circuits , 1992 .

[31]  Yang Hao,et al.  Experimental Study of the Subwavelength Imaging by a Wire Medium Slab , 2007, 2007 International workshop on Antenna Technology: Small and Smart Antennas Metamaterials and Applications.

[32]  Yuri S. Kivshar,et al.  Tuning the nonlinear response of coupled split-ring resonators , 2011 .

[33]  D. Sievenpiper,et al.  Superluminal Waveguides Based on Non-Foster Circuits for Broadband Leaky-Wave Antennas , 2011, IEEE Antennas and Wireless Propagation Letters.

[34]  A. Toscano,et al.  Equivalent-Circuit Models for the Design of Metamaterials Based on Artificial Magnetic Inclusions , 2007, IEEE Transactions on Microwave Theory and Techniques.

[35]  Ekmel Ozbay,et al.  Electrically small split ring resonator antennas , 2007 .

[36]  Sergei A. Tretyakov,et al.  Meta‐materials with wideband negative permittivity and permeability , 2001 .

[37]  Hassan Mirzaei,et al.  A wideband metamaterial-inspired compact antenna using embedded non-Foster matching , 2011, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI).

[38]  Roberto G. Rojas,et al.  Non-Foster impedance matching of electrically small antennas , 2010, 2010 IEEE Antennas and Propagation Society International Symposium.

[39]  F. Bilotti,et al.  Design of Miniaturized Metamaterial Patch Antennas With $\mu$-Negative Loading , 2008, IEEE Transactions on Antennas and Propagation.

[40]  Igor Krois,et al.  Negative capacitor paves the way to ultra-broadband metamaterials , 2011 .

[41]  Francisco Medina,et al.  Artificial magnetic metamaterial design by using spiral resonators , 2004 .

[42]  C. Di Nallo,et al.  Small Wideband Antenna with non-Foster Loading Elements , 2007, 2007 International Conference on Electromagnetics in Advanced Applications.

[43]  D. Sievenpiper,et al.  Active electromagnetic structures, metamaterials, and antennas , 2012, 2012 IEEE International Workshop on Antenna Technology (iWAT).

[44]  B. Delacressonniere,et al.  Using a negative capacitance to increase the tuning range of a varactor diode in MMIC technology , 2001, IMS 2001.

[45]  Olivier J. F. Martin,et al.  Efficient isotropic magnetic resonators , 2002 .

[46]  J. L. Merrill Theory of the negative impedance converter , 1951 .

[47]  Alessandro Toscano,et al.  Design of a multifunctional SRR-loaded printed monopole antenna , 2012 .

[48]  Igor Krois,et al.  Towards active dispersionless ENZ metamaterial for cloaking applications , 2010 .

[49]  Peng Jin,et al.  Broadband, Efficient, Electrically Small Metamaterial-Inspired Antennas Facilitated by Active Near-Field Resonant Parasitic Elements , 2010, IEEE Transactions on Antennas and Propagation.