Reliable Counterfactual Explanations for Autoencoder based Anomalies
暂无分享,去创建一个
[1] Yang Liu,et al. Actionable Recourse in Linear Classification , 2018, FAT.
[2] Amir-Hossein Karimi,et al. Model-Agnostic Counterfactual Explanations for Consequential Decisions , 2019, AISTATS.
[3] Thomas G. Dietterich,et al. Sequential Feature Explanations for Anomaly Detection , 2019, ACM Trans. Knowl. Discov. Data.
[4] Guigang Zhang,et al. Deep Learning , 2016, Int. J. Semantic Comput..
[5] Chris Russell,et al. Efficient Search for Diverse Coherent Explanations , 2019, FAT.
[6] Amit Sharma,et al. Explaining machine learning classifiers through diverse counterfactual explanations , 2020, FAT*.
[7] Scott Lundberg,et al. A Unified Approach to Interpreting Model Predictions , 2017, NIPS.
[8] Carlos Guestrin,et al. "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.
[9] Chris Russell,et al. Counterfactual Explanations Without Opening the Black Box: Automated Decisions and the GDPR , 2017, ArXiv.
[10] Takehisa Yairi,et al. Anomaly Detection Using Autoencoders with Nonlinear Dimensionality Reduction , 2014, MLSDA'14.
[11] Geoffrey E. Hinton,et al. Learning internal representations by error propagation , 1986 .
[12] Randy C. Paffenroth,et al. Anomaly Detection with Robust Deep Autoencoders , 2017, KDD.
[13] Naoya Takeishi. Shapley Values of Reconstruction Errors of PCA for Explaining Anomaly Detection , 2019, 2019 International Conference on Data Mining Workshops (ICDMW).
[14] Natalia Gimelshein,et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.
[15] I. Davidson. Anomaly Detection, Explanation and Visualization , 2022 .
[16] Debdeep Mukhopadhyay,et al. Adversarial Attacks and Defences: A Survey , 2018, ArXiv.
[17] Lior Rokach,et al. Explaining Anomalies Detected by Autoencoders Using SHAP , 2019, ArXiv.
[18] Paulo Cortez,et al. A data-driven approach to predict the success of bank telemarketing , 2014, Decis. Support Syst..
[19] Alberto Costa,et al. RBFOpt: an open-source library for black-box optimization with costly function evaluations , 2018, Mathematical Programming Computation.