On the Cauchy problem for the NLS equations in R1+1

Abstract In this paper, we consider the local and global solutions for the nonlinear Schrodinger equation with data in the homogeneous and nonhomogeneous Besov space and the scattering result for small data. The techniques to be used are adapted from the Littlewood–Paley trichotomy, the Strichartz type estimate, Kato’s smoothing effect and the maximal function (in time) estimate for the Schrodinger equation.

[1]  H. Pecher Solutions of semilinear Schrödinger equations in $H^s$ , 1997 .

[2]  Axel Grünrock New applications of the Fourier restriction norm method to wellposedness problems for nonlinear evolution equations , 2002 .

[3]  Tosio Kato On nonlinear Schrödinger equations, II.HS-solutions and unconditional well-posedness , 1995 .

[4]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[5]  Thierry Cazenave,et al.  More self-similar solutions of the nonlinear Schrödinger equation , 1998 .

[6]  K. Nakanishi Energy Scattering for Nonlinear Klein–Gordon and Schrödinger Equations in Spatial Dimensions 1 and 2☆ , 1999 .

[7]  F. Planchon Dispersive estimates and the 2D cubic NLS equation , 2002 .

[8]  Thierry Cazenave,et al.  Scattering Theory and Self-Similar Solutions for the Nonlinear Schrödinger Equation , 2000, SIAM J. Math. Anal..

[9]  C. Kenig,et al.  Well‐posedness and scattering results for the generalized korteweg‐de vries equation via the contraction principle , 1993 .

[10]  Thierry Cazenave,et al.  The Cauchy problem for the nonlinear Schrödinger equation in H1 , 1988 .

[11]  Francis Ribaud,et al.  Well-posedness results for the generalized Benjamin–Ono equation with small initial data , 2004 .

[12]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[13]  Hart F. Smith,et al.  Global strichartz estimates for nonthapping perturbations of the laplacian , 1999, math/9912204.

[14]  Y. Nakamura,et al.  On nonlinear Schrödinger equations with stark effect , 2002 .

[15]  J. Ginibre,et al.  The global Cauchy problem for the nonlinear Schrodinger equation revisited , 1985 .

[16]  Hans Lindblad,et al.  On Existence and Scattering with Minimal Regularity for Semilinear Wave Equations , 1995 .

[17]  T. Ozawa,et al.  Nonlinear Schrdinger equations in the Sobolev space of critical order , 1998 .

[18]  T. Tao Nonlinear dispersive equations : local and global analysis , 2006 .

[19]  F. Planchon Self-similar solutions and Besov spaces for semi-linear Schrödinger and wave equations , 1999 .

[20]  Jöran Bergh,et al.  General Properties of Interpolation Spaces , 1976 .

[21]  M. Cannone,et al.  Self-similar solutions for navier-stokes equations in , 1996 .

[22]  F. Planchon ON THE CAUCHY PROBLEM IN BESOV SPACES FOR A NON-LINEAR SCHRÖDINGER EQUATION , 2000 .

[23]  T. Cazenave,et al.  Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations , 1998 .

[24]  Luc Molinet,et al.  On the Cauchy Problem for the Generalized Korteweg-de Vries Equation , 2003 .

[25]  Xiaoyi Zhang,et al.  Self-Similar Solutions for Nonlinear Schrodinger Equations , 2003 .

[26]  Luis Vega,et al.  Oscillatory integrals and regularity of dispersive equations , 1991 .