Sticky Feet: From Animals to Materials

Many insects and some larger animals, such as geckos, skinks, and tree frogs, can easily climb vertical walls and even walk on the ceiling. These abilities require a method to attach the feet strongly but reversibly to a variety of surfaces—smooth or rough, hydrophilic or hydrophobic, clean or containing contaminants. This issue of MRS Bulletin examines how fibrils, absorbed water layers, geometry, and other factors make reversible adhesion possible, and how this understanding might be applied to robots and other artificially created structures that can climb walls, walk on ceilings, and get to other hard-to-reach places.

[1]  H. Cruse,et al.  Leg coordination during turning on an extremely narrow substrate in a bug, Mesocerus marginatus (Heteroptera, Coreidae). , 2005, Journal of insect physiology.

[2]  Costantino Creton,et al.  Pressure-Sensitive Adhesives: An Introductory Course , 2003 .

[3]  S. Gorb,et al.  From micro to nano contacts in biological attachment devices , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[4]  S. Gorb Uncovering insect stickiness: structure and properties of hairy attachment devices , 2005 .

[5]  A. Jagota,et al.  Design of biomimetic fibrillar interfaces: 1. Making contact , 2004, Journal of The Royal Society Interface.

[6]  Stanislav Gorb,et al.  Contact behaviour of tenent setae in attachment pads of the blowfly Calliphora vicina (Diptera, Calliphoridae) , 2001, Journal of Comparative Physiology A.

[7]  Oliver Betz,et al.  Performance and adaptive value of tarsal morphology in rove beetles of the genus Stenus (Coleoptera, Staphylinidae). , 2002, The Journal of experimental biology.

[8]  A. Geim,et al.  Microfabricated adhesive mimicking gecko foot-hair , 2003, Nature materials.

[9]  Huajian Gao,et al.  Effects of contact shape on the scaling of biological attachments , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  Kimberly L. Turner,et al.  Meso-scale adhesion testing of integrated micro- and nano-scale structures , 2006 .

[11]  Anand Jagota,et al.  Mechanics of Adhesion Through a Fibrillar Microstructure1 , 2002, Integrative and comparative biology.

[12]  Ralph Spolenak,et al.  Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy , 2005, Biology Letters.

[13]  G. Walker,et al.  The adhesive organ of the blowfly, Calliphora vomitoria: a functional approach (Diptera: Calliphoridae) , 1985 .

[14]  H. Cruse The control of the anterior extreme position of the hindleg of a walking insect, Carausius morosus , 1979 .

[15]  A. Jagota,et al.  Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion , 2004, Journal of The Royal Society Interface.

[16]  W. Barnes,et al.  DEVELOPMENT OF ADHESIVE TOE-PADS IN THE TREE-FROG (PHYLLOMEDUSA TRINITATIS) , 2000 .

[17]  W. Barnes,et al.  Adhesion and Detachment of the Toe Pads of Tree Frogs , 1991 .

[18]  R E Ritzmann,et al.  Effects of aging on behavior and leg kinematics during locomotion in two species of cockroach , 2003, Journal of Experimental Biology.

[19]  Eleanor H. Slifer,et al.  Vulnerable Areas on the Surface of the Tarsus and Pretarsus of the Grasshopper (Acrididae, Orthoptera); with Special Reference to the Arolium , 1950 .

[20]  S. Gorb,et al.  Biomimetic mushroom-shaped fibrillar adhesive microstructure , 2007, Journal of The Royal Society Interface.

[21]  R. Full,et al.  Adhesive force of a single gecko foot-hair , 2000, Nature.

[22]  Tian Tang,et al.  Can a fibrillar interface be stronger and tougher than a non-fibrillar one? , 2005, Journal of The Royal Society Interface.

[23]  U. Hiller Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilien , 1968, Zeitschrift für Morphologie der Tiere.

[24]  Ralph Spolenak,et al.  Adhesion design maps for bio-inspired attachment systems. , 2005, Acta biomaterialia.

[25]  S. Gorb,et al.  WHEN LESS IS MORE: EXPERIMENTAL EVIDENCE FOR TENACITY ENHANCEMENT BY DIVISION OF CONTACT AREA , 2004 .

[26]  Thomas A. McMahon,et al.  Biomechanics of the movable pretarsal adhesive organ in ants and bees , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Ali Dhinojwala,et al.  Synthetic gecko foot-hairs from multiwalled carbon nanotubes. , 2005, Chemical communications.

[28]  Stanislav N. Gorb,et al.  The design of the fly adhesive pad: distal tenent setae are adapted to the delivery of an adhesive secretion , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[29]  Robert N. Fisher,et al.  A comparative analysis of clinging ability among pad‐bearing lizards , 1996 .

[30]  N. Rizzo,et al.  Characterization of the structure and composition of gecko adhesive setae , 2006, Journal of The Royal Society Interface.

[31]  Roy E. Ritzmann,et al.  Insights into age-related locomotor declines from studies of insects , 2005, Ageing Research Reviews.

[32]  Marion D. Kendall,et al.  The Anatomy of the Tarsi of Schistocerca gregaria Forskål , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[33]  Yoseph Bar-Cohen,et al.  Biomimetics : Biologically Inspired Technologies , 2011 .

[34]  Bieke Vanhooydonck,et al.  Effects of substrate structure on speed and acceleration capacity in climbing geckos , 2005 .

[35]  S. Gorb,et al.  Spring model of biological attachment pads. , 2006, Journal of theoretical biology.

[36]  S. Gorb,et al.  Tarsal movements in flies during leg attachment and detachment on a smooth substrate. , 2003, Journal of insect physiology.

[37]  Ralph Spolenak,et al.  Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Kimberly L. Turner,et al.  A batch fabricated biomimetic dry adhesive , 2005 .

[39]  Y. Jiao,et al.  Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera, insecta). , 2000, The Journal of experimental biology.

[40]  S. Gorb Attachment Devices of Insect Cuticle , 2001, Springer Netherlands.

[41]  Heinz Schwarz,et al.  Material structure, stiffness, and adhesion: why attachment pads of the grasshopper (Tettigonia viridissima) adhere more strongly than those of the locust (Locusta migratoria) (Insecta: Orthoptera) , 2006, Journal of Comparative Physiology A.