Cardiometabolic health, diet and the gut microbiome: a meta-omics perspective

[1]  T. Spector,et al.  The person-to-person transmission landscape of the gut and oral microbiomes , 2023, Nature.

[2]  P. Manghi,et al.  Variability of strain engraftment and predictability of microbiome composition after fecal microbiota transplantation across different diseases , 2022, Nature Medicine.

[3]  J. Raes,et al.  Single-cell approaches in human microbiome research , 2022, Cell.

[4]  Xin Liu,et al.  Metabolomic changes upon conjugated linoleic acid supplementation and predictions of body composition responsiveness. , 2022, The Journal of clinical endocrinology and metabolism.

[5]  E. Elinav,et al.  Time‐limited diets and the gut microbiota in cardiometabolic disease , 2022, Journal of diabetes.

[6]  Sean M. Kearney,et al.  Discovery of bioactive microbial gene products in inflammatory bowel disease , 2022, Nature.

[7]  C. Kovesdy,et al.  Circulating Microbiota in Cardiometabolic Disease , 2022, Frontiers in Cellular and Infection Microbiology.

[8]  A. Paterson,et al.  Mediterranean-like dietary pattern associations with gut microbiome composition and sub-clinical gastrointestinal inflammation. , 2022, Gastroenterology.

[9]  A. Kurilshikov,et al.  Environmental factors shaping the gut microbiome in a Dutch population , 2022, Nature.

[10]  Yun Wang,et al.  Integrated metagenomics identifies a crucial role for trimethylamine-producing Lachnoclostridium in promoting atherosclerosis , 2022, NPJ biofilms and microbiomes.

[11]  E. Blaak,et al.  Dietary macronutrients and the gut microbiome: a precision nutrition approach to improve cardiometabolic health , 2022, Gut.

[12]  Luis Pedro Coelho,et al.  Microbiome and metabolome features of the cardiometabolic disease spectrum , 2022, Nature Medicine.

[13]  O. Pedersen,et al.  Metabolomic and microbiome profiling reveals personalized risk factors for coronary artery disease , 2022, Nature Medicine.

[14]  H. Tilg,et al.  Gut microbiome and health: mechanistic insights , 2022, Gut.

[15]  F. De Filippis,et al.  Outlook on next-generation probiotics from the human gut , 2022, Cellular and Molecular Life Sciences.

[16]  H. Nielsen,et al.  An online atlas of human plasma metabolite signatures of gut microbiome composition , 2021, Nature Communications.

[17]  A. Metspalu,et al.  Gut metagenome associations with extensive digital health data in a volunteer-based Estonian microbiome cohort , 2021, Nature Communications.

[18]  Timothy C. Bates,et al.  Discovery of 42 genome-wide significant loci associated with dyslexia , 2021, Nature Genetics.

[19]  Isnard,et al.  Microbiome and Metabolome Features of the Cardiometabolic Disease 2 Spectrum 3 4 , 2022 .

[20]  M. Nieuwdorp,et al.  The Role of the Gut Microbiota on the Beneficial Effects of Ketogenic Diets , 2021, Nutrients.

[21]  A. Magis,et al.  Heterogeneity in statin responses explained by variation in the human gut microbiome , 2021, medRxiv.

[22]  M. Popović,et al.  Exosomes and exosome-mimetics as targeted drug carriers: Where we stand and what the future holds? , 2021, Journal of Drug Delivery Science and Technology.

[23]  Chu-tian Mai,et al.  Bile acids as regulatory molecules and potential targets in metabolic diseases. , 2021, Life sciences.

[24]  Kun Lu,et al.  High-coverage metabolomics uncovers microbiota-driven biochemical landscape of interorgan transport and gut-brain communication in mice , 2021, Nature Communications.

[25]  J. Kuleš,et al.  Combined Untargeted and Targeted Metabolomics Approaches Reveal Urinary Changes of Amino Acids and Energy Metabolism in Canine Babesiosis With Different Levels of Kidney Function , 2021, Frontiers in Microbiology.

[26]  Ana Rita Brochado,et al.  Bioaccumulation of therapeutic drugs by human gut bacteria , 2021, Nature.

[27]  P. Oliveira Bacterial Epigenomics: Coming of Age , 2021, mSystems.

[28]  Brian J. Bennett,et al.  High-fat diet–induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide , 2021, Science.

[29]  Sean M. Kearney,et al.  Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians , 2021, Nature.

[30]  M. Ufnal,et al.  The impact of gut microbiota metabolites on cellular bioenergetics and cardiometabolic health , 2021, Nutrition & Metabolism.

[31]  J. Dahlerup,et al.  Danish national guideline for the treatment of Clostridioides difficile infection and use of faecal microbiota transplantation (FMT) , 2021, Scandinavian journal of gastroenterology.

[32]  P. Manghi,et al.  Genomic diversity and ecology of human-associated Akkermansia species in the gut microbiome revealed by extensive metagenomic assembly , 2021, Genome biology.

[33]  M. Nieuwdorp,et al.  Effect of Fecal Microbiota Transplantation Combined With Mediterranean Diet on Insulin Sensitivity in Subjects With Metabolic Syndrome , 2021, Frontiers in Microbiology.

[34]  Edoardo Pasolli,et al.  Prevotella diversity, niches and interactions with the human host , 2021, Nature Reviews Microbiology.

[35]  A. Kurilshikov,et al.  Stability of the human gut virome and effect of gluten-free diet. , 2021, Cell reports.

[36]  S. Perna,et al.  The Potential Roles of Very Low Calorie, Very Low Calorie Ketogenic Diets and Very Low Carbohydrate Diets on the Gut Microbiota Composition , 2021, Frontiers in Endocrinology.

[37]  C. Hill,et al.  The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics , 2021, Nature Reviews Gastroenterology & Hepatology.

[38]  Mathias Uhlen,et al.  Multi-omics approaches for revealing the complexity of cardiovascular disease , 2021, Briefings Bioinform..

[39]  N. Gasaly,et al.  Butyrate and the Fine-Tuning of Colonic Homeostasis: Implication for Inflammatory Bowel Diseases , 2021, International journal of molecular sciences.

[40]  K. Patil,et al.  Towards a mechanistic understanding of reciprocal drug–microbiome interactions , 2021, Molecular systems biology.

[41]  J. Badger,et al.  Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients , 2021, Science.

[42]  Patrice D Cani,et al.  The Liver under the Spotlight: Bile Acids and Oxysterols as Pivotal Actors Controlling Metabolism , 2021, Cells.

[43]  E. Rimm,et al.  The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk , 2021, Nature Medicine.

[44]  David A. Drew,et al.  Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals , 2021, Nature Medicine.

[45]  A. Valdes,et al.  The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health , 2021, Gut microbes.

[46]  M. Mayr,et al.  Systems biology in cardiovascular disease: a multiomics approach , 2020, Nature Reviews Cardiology.

[47]  N. Ajami,et al.  Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients , 2020, Science.

[48]  Tytus D. Mak,et al.  Gut microbe-targeted choline trimethylamine lyase inhibition improves obesity via rewiring of host circadian rhythms , 2020, bioRxiv.

[49]  T. Spector,et al.  A reference map of potential determinants for the human serum metabolome , 2020, Nature.

[50]  Rohan B. H. Williams,et al.  Integration of time-series meta-omics data reveals how microbial ecosystems respond to disturbance , 2020, Nature Communications.

[51]  M. Xia,et al.  Intermittent Fasting Improves Cardiometabolic Risk Factors and Alters Gut Microbiota in Metabolic Syndrome Patients. , 2020, The Journal of clinical endocrinology and metabolism.

[52]  G. Reid,et al.  The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics , 2020, Nature Reviews Gastroenterology & Hepatology.

[53]  Robert D. Finn,et al.  A unified catalog of 204,938 reference genomes from the human gut microbiome , 2020, Nature Biotechnology.

[54]  T. Spector,et al.  Consumption of Stilbenes and Flavonoids is Linked to Reduced Risk of Obesity Independently of Fiber Intake , 2020, Nutrients.

[55]  David A. Drew,et al.  Human postprandial responses to food and potential for precision nutrition , 2020, Nature Medicine.

[56]  Gavin M Douglas,et al.  PICRUSt2 for prediction of metagenome functions , 2020, Nature Biotechnology.

[57]  E. Ravussin,et al.  Ketogenic Diets Alter the Gut Microbiome Resulting in Decreased Intestinal Th17 Cells , 2020, Cell.

[58]  Luis Pedro Coelho,et al.  Statin therapy is associated with lower prevalence of gut microbiota dysbiosis , 2020, Nature.

[59]  Edoardo Pasolli,et al.  Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake , 2020, Gut.

[60]  Enrico Giampieri,et al.  Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries , 2020, Gut.

[61]  F. Jamali,et al.  Single dose pharmacokinetics and bioavailability of glucosamine in the rat. , 2002, Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques.

[62]  Y. Wan,et al.  Contribution of diet to gut microbiota and related host cardiometabolic health: diet-gut interaction in human health , 2020, Gut microbes.

[63]  B. B. Finlay,et al.  Are noncommunicable diseases communicable? , 2020, Science.

[64]  M. Nieuwdorp,et al.  Gut microbiota: a promising target against cardiometabolic diseases , 2020, Expert review of endocrinology & metabolism.

[65]  M. Rogero,et al.  The Two-Way Polyphenols-Microbiota Interactions and Their Effects on Obesity and Related Metabolic Diseases , 2019, Front. Nutr..

[66]  Albert-László Barabási,et al.  The unmapped chemical complexity of our diet , 2019, Nature Food.

[67]  Yan Jin,et al.  Orally Administered CLA Ameliorates DSS-induced Colitis in Mice via Intestinal Barrier Improvement, Oxidative Stress Reduction, Inflammatory Cytokine and Gut Microbiota Modulation. , 2019, Journal of agricultural and food chemistry.

[68]  John D. Wiltshire-Gordon,et al.  Distinct Polysaccharide Utilization Profiles of Human Intestinal Prevotella copri Isolates. , 2019, Cell host & microbe.

[69]  Paolo Manghi,et al.  The Prevotella copri Complex Comprises Four Distinct Clades Underrepresented in Westernized Populations , 2019, Cell host & microbe.

[70]  D. Milenkovic,et al.  Polyphenols in human nutrition: from the in vitro antioxidant capacity to the beneficial effects on cardiometabolic health and related inter-individual variability – an overview and perspective , 2019, British Journal of Nutrition.

[71]  Patrick S. G. Chain,et al.  Advances and Challenges in Metatranscriptomic Analysis , 2019, Front. Genet..

[72]  K. Narayan,et al.  Global Updates on Cardiovascular Disease Mortality Trends and Attribution of Traditional Risk Factors , 2019, Current Diabetes Reports.

[73]  N. Bray The microbiota–gut–brain axis , 2019 .

[74]  Elizabeth N. Bess,et al.  Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism , 2019, Science.

[75]  Benjamin M Hillmann,et al.  Daily Sampling Reveals Personalized Diet-Microbiome Associations in Humans. , 2019, Cell host & microbe.

[76]  A. Goodman,et al.  Mapping human microbiome drug metabolism by gut bacteria and their genes , 2019, Nature.

[77]  J. Raes,et al.  Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study , 2019, Nature Medicine.

[78]  M. Kleiner Metaproteomics: Much More than Measuring Gene Expression in Microbial Communities , 2019, mSystems.

[79]  Colin J. Brislawn,et al.  Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases , 2019, Nature.

[80]  Eddy J. Bautista,et al.  Longitudinal multi-omics of host–microbe dynamics in prediabetes , 2019, Nature.

[81]  P. Bork,et al.  Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation , 2019, Nature Medicine.

[82]  Melissa Johnson Diet and Nutrition: Implications to Cardiometabolic Health , 2019, Journal of Cardiology and Cardiovascular Sciences.

[83]  J. Raes,et al.  The neuroactive potential of the human gut microbiota in quality of life and depression , 2019, Nature Microbiology.

[84]  B. Larijani,et al.  The effects of supplementation with conjugated linoleic acid on anthropometric indices and body composition in overweight and obese subjects: A systematic review and meta-analysis , 2019, Critical reviews in food science and nutrition.

[85]  Edoardo Pasolli,et al.  Extensive Unexplored Human Microbiome Diversity Revealed by Over 150,000 Genomes from Metagenomes Spanning Age, Geography, and Lifestyle , 2019, Cell.

[86]  William H. Bisson,et al.  Gut microbiota and intestinal FXR mediate the clinical benefits of metformin , 2018, Nature Medicine.

[87]  A. Toyoda,et al.  Metaepigenomic analysis reveals the unexplored diversity of DNA methylation in an environmental prokaryotic community , 2018, bioRxiv.

[88]  T. Spector,et al.  Role of the gut microbiota in nutrition and health , 2018, British Medical Journal.

[89]  T. Spector,et al.  The fecal metabolome as a functional readout of the gut microbiome , 2018, Nature Genetics.

[90]  Massimo Mangino,et al.  Gut microbial diversity is associated with lower arterial stiffness in women , 2018, European heart journal.

[91]  D. Raoult,et al.  Culturing the human microbiota and culturomics , 2018, Nature Reviews Microbiology.

[92]  Peer Bork,et al.  Extensive impact of non-antibiotic drugs on human gut bacteria , 2018, Nature.

[93]  P. Bork,et al.  Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies , 2018, Nature Microbiology.

[94]  A. Kurilshikov,et al.  Environment dominates over host genetics in shaping human gut microbiota , 2018, Nature.

[95]  G. Ianiro,et al.  Faecal Microbiota Transplantation as Emerging Treatment in European Countries. , 2018, Advances in experimental medicine and biology.

[96]  E. Rimm,et al.  Metatranscriptome of human fecal microbial communities in a cohort of adult men , 2018, Nature Microbiology.

[97]  C. Huttenhower,et al.  Dynamics of metatranscription in the inflammatory bowel disease gut microbiome , 2018, Nature Microbiology.

[98]  G. Nolan,et al.  A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites , 2017, Nature.

[99]  W. Tang,et al.  Gut microbiome and its role in cardiovascular diseases , 2017, Current opinion in cardiology.

[100]  Lisa Maier,et al.  Systematically investigating the impact of medication on the gut microbiome. , 2017, Current opinion in microbiology.

[101]  N. Segata,et al.  Shotgun metagenomics, from sampling to analysis , 2017, Nature Biotechnology.

[102]  Lana X. Garmire,et al.  More Is Better: Recent Progress in Multi-Omics Data Integration Methods , 2017, Front. Genet..

[103]  David Torrents,et al.  Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug , 2017, Nature Medicine.

[104]  D. Pieper,et al.  Uncovering the trimethylamine-producing bacteria of the human gut microbiota , 2017, Microbiome.

[105]  C. Hill,et al.  Next-generation probiotics: the spectrum from probiotics to live biotherapeutics , 2017, Nature Microbiology.

[106]  W. Liao,et al.  Influence of diet on the gut microbiome and implications for human health , 2017, Journal of Translational Medicine.

[107]  V. Leone,et al.  Microbial metabolites in health and disease: Navigating the unknown in search of function , 2017, The Journal of Biological Chemistry.

[108]  Tim D. Spector,et al.  Mixing omics: combining genetics and metabolomics to study rheumatic diseases , 2017, Nature Reviews Rheumatology.

[109]  Kenji Sonomoto,et al.  Impact of Westernized Diet on Gut Microbiota in Children on Leyte Island , 2017, Front. Microbiol..

[110]  H. Flint,et al.  Formation of propionate and butyrate by the human colonic microbiota. , 2017, Environmental microbiology.

[111]  F. Hildebrand,et al.  Species–function relationships shape ecological properties of the human gut microbiome , 2016, Nature Microbiology.

[112]  J. Raes,et al.  Meta-omics in Inflammatory Bowel Disease Research: Applications, Challenges, and Guidelines. , 2016, Journal of Crohn's & colitis.

[113]  S. Linnarsson,et al.  Single-cell genomics: coming of age , 2016, Genome Biology.

[114]  J. Raes,et al.  Population-level analysis of gut microbiome variation , 2016, Science.

[115]  Morris A. Swertz,et al.  Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity , 2016, Science.

[116]  T. Preston,et al.  Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism , 2016, Gut microbes.

[117]  A. Colville,et al.  Adverse events in faecal microbiota transplant: a review of the literature. , 2016, The Journal of hospital infection.

[118]  F. Bäckhed,et al.  Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella. , 2015, Cell metabolism.

[119]  E. Segal,et al.  Personalized Nutrition by Prediction of Glycemic Responses , 2015, Cell.

[120]  R. Landberg,et al.  Metabolomics for Improved Understanding and Prediction of Cardiometabolic Diseases—Recent Findings from Human Studies , 2015, Current Nutrition Reports.

[121]  Jeroen Raes,et al.  Microbiology Meets Big Data: The Case of Gut Microbiota-Derived Trimethylamine. , 2015, Annual review of microbiology.

[122]  Jens Roat Kultima,et al.  Disentangling the effects of type 2 diabetes and metformin on the human gut microbiota , 2016 .

[123]  Paul Wilmes,et al.  A decade of metaproteomics: Where we stand and what the future holds , 2015, Proteomics.

[124]  A. Gasbarrini,et al.  The human gut microbiota and virome: Potential therapeutic implications , 2015, Digestive and Liver Disease.

[125]  T. Hansen,et al.  The gut microbiome in cardio-metabolic health , 2015, Genome Medicine.

[126]  Samuel I. Miller,et al.  Fecal Microbial Transplant Effect on Clinical Outcomes and Fecal Microbiome in Active Crohn's Disease , 2015, Inflammatory bowel diseases.

[127]  K. Verhoeckx,et al.  The Impact of Food Bioactives on Health , 2015, Springer International Publishing.

[128]  Glenn R. Gibson,et al.  The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic , 2014 .

[129]  Lawrence A. David,et al.  Diet rapidly and reproducibly alters the human gut microbiome , 2013, Nature.

[130]  F. Tinahones,et al.  Benefits of polyphenols on gut microbiota and implications in human health. , 2013, The Journal of nutritional biochemistry.

[131]  P. Turnbaugh,et al.  Predicting and Manipulating Cardiac Drug Inactivation by the Human Gut Bacterium Eggerthella lenta , 2013, Science.

[132]  Fredrik H. Karlsson,et al.  Gut metagenome in European women with normal, impaired and diabetic glucose control , 2013, Nature.

[133]  P. Edwards,et al.  Pleiotropic roles of bile acids in metabolism. , 2013, Cell metabolism.

[134]  R. Gerszten,et al.  Targeted Metabolomics , 2012, Current protocols in molecular biology.

[135]  Agata Korecka,et al.  The gut microbiome: scourge, sentinel or spectator? , 2012, Journal of oral microbiology.

[136]  F. Bushman,et al.  Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes , 2011, Science.

[137]  F. Bushman,et al.  The human gut virome: inter-individual variation and dynamic response to diet. , 2011, Genome research.

[138]  F. Shanahan,et al.  Recombinant lactobacilli expressing linoleic acid isomerase can modulate the fatty acid composition of host adipose tissue in mice. , 2011, Microbiology.

[139]  J. Parkhill,et al.  Dominant and diet-responsive groups of bacteria within the human colonic microbiota , 2011, The ISME Journal.

[140]  E. Murphy,et al.  Dietary prebiotics: current status and new definition , 2010 .

[141]  D. Willis A decade on , 2008, Journal of intellectual disabilities : JOID.

[142]  P. Turnbaugh,et al.  Microbial ecology: Human gut microbes associated with obesity , 2006, Nature.

[143]  C. Mathers,et al.  Projections of Global Mortality and Burden of Disease from 2002 to 2030 , 2006, PLoS medicine.

[144]  Royston Goodacre,et al.  Metabolomics: Current technologies and future trends , 2006, Proteomics.

[145]  G. Macfarlane,et al.  The control and consequences of bacterial fermentation in the human colon. , 1991, The Journal of applied bacteriology.

[146]  A. Ferro-Luzzi,et al.  Changing the Mediterranean diet: effects on blood lipids. , 1984, The American journal of clinical nutrition.