Multiscale simulations on the coarsening of Cu-rich precipitates in α-Fe using kinetic Monte Carlo, molecular dynamics and phase-field simulations

Abstract The coarsening kinetics of Cu-rich precipitates in an α-Fe matrix for thermally aged Fe–Cu alloys at temperatures above 700 °C is studied using a kinetic Monte Carlo (KMC) simulation and a phase-field method (PFM). In this work, the KMC approach adequately captures the early stage of the system evolution which involves nucleation, growth and coarsening, while the PFM provides a suitable framework for studying late-stage coarsening at large precipitate volume fraction regimes. Hence, both models complement each other by transferring the results of KMC along with precipitate–matrix interface energies from a broken-bond model to a quantitative PFM based on a grand chemical potential formulation and the CALPHAD database. Furthermore, molecular dynamics simulations provide information on the structural coherency of the precipitates and hence justify the sequential parameter transfer. We show that our PFM can be validated quantitatively for the Gibbs–Thomson effect and that it also predicts the coarsening kinetics correctly. It is found that the kinetics closely follow the LSW (Lifshitz–Slyozov–Wagner) law, whereas the coarsening rate constant increases with an increase in volume fraction of precipitates.

[1]  S. Schmauder,et al.  Atomistic simulation of precipitation hardening in α-iron: influence of precipitate shape and chemical composition , 2004 .

[2]  S. Schmauder,et al.  Atomistic simulations of solid solution strengthening of α-iron , 2011 .

[3]  T. Abinandanan,et al.  Phase field study of precipitate growth: Effect of misfit strain and interface curvature , 2009 .

[4]  P. Voorhees,et al.  Transient Ostwald ripening and the disagreement between steady-state coarsening theory and experiment , 2001 .

[5]  B. Nestler,et al.  Phase-field modeling of multi-component systems , 2011 .

[6]  K. Kawasaki,et al.  Finite volume fraction effects on Ostwald ripening , 1986 .

[7]  C. Domain,et al.  Precipitation of the FeCu system: A critical review of atomic kinetic Monte Carlo simulations , 2008 .

[8]  E. Kozeschnik,et al.  Generalized Nearest-Neighbor Broken-Bond Analysis of Randomly Oriented Coherent Interfaces in Multicomponent Fcc and Bcc Structures , 2009 .

[9]  T. Koyama,et al.  Phase-field simulation of phase transformation in Fe-Cu-Mn-Ni quaternary alloy , 2006 .

[10]  Irina Singer-Loginova,et al.  The phase field technique for modeling multiphase materials , 2008 .

[11]  D. Rowenhorst,et al.  Particle coarsening in high volume fraction solid-liquid mixtures , 2006 .

[12]  M. S. Anand,et al.  Diffusion of Copper in Iron , 1966 .

[13]  Charlotte Becquart,et al.  Solute interaction with point defects in α Fe during thermal ageing: A combined ab initio and atomic kinetic Monte Carlo approach , 2006 .

[14]  T. Koyama,et al.  Phase-Field Modeling of the Microstructure Evolutions in Fe-Cu Base Alloys , 2007 .

[15]  Toshio Suzuki,et al.  Ostwald Ripening Analysis Using Phase-Field Model , 2001 .

[16]  Charlotte Becquart,et al.  Atomic kinetic Monte Carlo model based on ab initio data: Simulation of microstructural evolution under irradiation of dilute Fe–CuNiMnSi alloys , 2007 .

[17]  Jörg Stadler,et al.  IMD: A Software Package for Molecular Dynamics Studies on Parallel Computers , 1997 .

[18]  G. Smith,et al.  High-resolution electron microscopy studies of the structure of Cu precipitates in α-Fe , 1994 .

[19]  A. Karma,et al.  Phase-Field Simulation of Solidification , 2002 .

[20]  Peter Binkele,et al.  Atomistic multiscale simulations on the anisotropic tensile behaviour of copper-alloyed alpha-iron at different states of thermal ageing , 2012 .

[21]  Morris Cohen,et al.  Self diffusion in iron , 1961 .

[22]  Britta Nestler,et al.  Computational Materials Engineering – An Introduction to Microstructure Evolution , 2007 .

[23]  Christopher M Wolverton,et al.  Multiscale modeling of θ′ precipitation in Al–Cu binary alloys , 2004 .

[24]  J. Warren,et al.  Ostwald ripening and coalescence of a binary alloy in two dimensions using a phase-field model , 1996 .

[25]  Frédéric Soisson,et al.  Monte Carlo simulations of copper precipitation in dilute iron-copper alloys during thermal ageing and under electron irradiation , 1996 .

[26]  B. Blanpain,et al.  An introduction to phase-field modeling of microstructure evolution , 2008 .

[27]  P. Kizler,et al.  Linking nanoscale and macroscale: calculation of the change in crack growth resistance of steels with different states of Cu precipitation using a modification of stress-strain curves owing to dislocation theory , 2000 .

[28]  P. Voorhees,et al.  THE DEVELOPMENT OF SPATIAL CORRELATIONS DURING OSTWALD RIPENING: A TEST OF THEORY , 2000 .

[29]  S. P. Marsh,et al.  Kinetics of phase coarsening in dense systems , 1996 .

[30]  Katsuyo Thornton,et al.  Modelling the evolution of phase boundaries in solids at the meso- and nano-scales , 2003 .

[31]  L. Ratke,et al.  Ostwald ripening of liquid phase sintered CuCo dispersions at high volume fractions , 1998 .

[32]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .

[33]  Zi-kui Liu,et al.  Linking phase-field model to CALPHAD: application to precipitate shape evolution in Ni-base alloys , 2002 .

[34]  Harald Garcke,et al.  A Diffuse Interface Model for Alloys with Multiple Components and Phases , 2004, SIAM J. Appl. Math..

[35]  A. Brailsford,et al.  The dependence of ostwald ripening kinetics on particle volume fraction , 1979 .

[36]  C. Fu,et al.  Energetic Landscapes and Diffusion Properties in FeCu Alloys , 2007 .

[37]  Seungwu Han,et al.  Development of new interatomic potentials appropriate for crystalline and liquid iron , 2003 .

[38]  A. Ardell,et al.  The effect of volume fraction on particle coarsening: theoretical considerations , 1972 .

[39]  B. Stinner,et al.  Multicomponent alloy solidification: phase-field modeling and simulations. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  J. Ross,et al.  Theory of Ostwald ripening: Competitive growth and its dependence on volume fraction , 1984 .

[41]  D. Yoon,et al.  Coarsening of cobalt grains dispersed in liquid copper matrix , 1981 .

[42]  Peter Binkele,et al.  Atomistic computer simulation of the formation of Cu-precipitates in steels , 2002 .

[43]  Tao Wang,et al.  Three-dimensional phase-field simulations of coarsening kinetics of γ' particles in binary Ni-Al alloys , 2004 .

[44]  D. Bacon,et al.  Mechanisms of hardening due to copper precipitates in α-iron , 2009 .

[45]  T. Koyama,et al.  Computer Simulation of Phase Decomposition in Fe-Cu-Mn-Ni Quaternary Alloy Based on the Phase-Field Method , 2005 .

[46]  T. Abinandanan,et al.  Precipitate growth with composition-dependent diffusivity: Comparison between theory and phase field simulations , 2010 .

[47]  K. Roberts,et al.  A fluorescence EXAFS study of the structure of copper-rich precipitates in Fe–Cu and Fe–Cu–Ni alloys , 1990 .

[48]  I. Steinbach,et al.  Multiscale simulations on the grain growth process in nanostructured materials , 2010 .

[49]  Nicolas Castin,et al.  Ternary Fe–Cu–Ni many-body potential to model reactor pressure vessel steels: First validation by simulated thermal annealing , 2009 .

[50]  J. Simmons,et al.  A ternary phase-field model incorporating commercial CALPHAD software and its application to precipitation in superalloys , 2010 .

[51]  Seong Gyoon Kim,et al.  Large-scale three-dimensional simulation of Ostwald ripening , 2007 .

[52]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[53]  Britta Nestler,et al.  Grand-potential formulation for multicomponent phase transformations combined with thin-interface asymptotics of the double-obstacle potential. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.