Hybrid logics: characterization, interpolation and complexity

Abstract Hybrid languages are expansions of propositional modal languages which can refer to (or even quantify over) worlds. The use of strong hybrid languages dates back to at least [Pri67], but recent work (for example [BS98, BT98a, BT99]) has focussed on a more constrained system called H(↓, @). We show in detail that (↓, @) is modally natural. We begin by studying its expressivity, and provide model theoretic characterizations (via a restricted notion of Ehrenfeucht-Fraïssé game, and an enriched notion of bisimulation) and a syntactic characterization (in terms of bounded formulas). The key result to emerge is that (↓, @) corresponds to the fragment of first-order logic which is invariant for generated submodels. We then show that (↓, @) enjoys (strong) interpolation, provide counterexamples for its finite variable fragments, and show that weak interpolation holds for the sublanguage (@). Finally, we provide complexity results for (@) and other fragments and variants, and sharpen known undecidability results for (↓, @).

[1]  Hans Reichenbach,et al.  Elements of symbolic logic , 1948 .

[2]  Evert W. Beth,et al.  On Padoa’s Method in the Theory of Definition , 1953 .

[3]  William Craig,et al.  Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory , 1957, Journal of Symbolic Logic.

[4]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[5]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .

[6]  Richard E. Ladner,et al.  The Computational Complexity of Provability in Systems of Modal Propositional Logic , 1977, SIAM J. Comput..

[7]  A. Woods Some problems in logic and number theory and their connections , 1981 .

[8]  Roderick M. Chisholm Tense , 1981, Tense and Performance.

[9]  J. Czelakowski Logical matrices and the amalgamation property , 1982 .

[10]  J.F.A.K. van Benthem,et al.  Modal logic and classical logic , 1983 .

[11]  Tinko Tinchev,et al.  Quantifiers in combinatory PDL: completeness, definability, incompleteness , 1985, FCT.

[12]  Bogdan S. Chlebus Domino-Tiling Games , 1986, J. Comput. Syst. Sci..

[13]  Tinko Tinchev,et al.  An Essay in Combinatory Dynamic Logic , 1991, Inf. Comput..

[14]  Larisa Maksimova,et al.  Amalgamation and interpolation in normal modal logics , 1991, Stud Logica.

[15]  J. Seligman A Cut-free Sequent Calculus for Elementary Situated Reasoning , 1991 .

[16]  Joseph Y. Halpern,et al.  A Guide to Completeness and Complexity for Modal Logics of Knowledge and Belief , 1992, Artif. Intell..

[17]  Valentin Goranko,et al.  Using the Universal Modality: Gains and Questions , 1992, J. Log. Comput..

[18]  Patrick Blackburn,et al.  Nominal Tense Logic , 1992, Notre Dame J. Formal Log..

[19]  Wilfrid Hodges,et al.  Model Theory: The existential case , 1993 .

[20]  Valentin Goranko,et al.  Modal logic with names , 1993, J. Philos. Log..

[21]  Edith Spaan The Complexity of Propositional Tense Logics , 1993 .

[22]  Yde Venema A Modal Logic for Quantification and Substitution , 1994, Log. J. IGPL.

[23]  Y. Venema A Modal Logic for Quantiication and Substitution , 1994 .

[24]  Patrick Blackburn,et al.  Hybrid languages , 1995, J. Log. Lang. Inf..

[25]  Johan van Benthem,et al.  Exploring logical dynamics , 1996, Studies in logic, language and information.

[26]  Valentin Goranko,et al.  Hierarchies of modal and temporal logics with reference pointers , 1996, J. Log. Lang. Inf..

[27]  J. Seligman The Logic of Correct Description , 1997 .

[28]  maarten marx Complexity of Modal Logics of RelationsMaarten MarxDepartment of Computing , 1997 .

[29]  Maarten Marx,et al.  Multi-dimensional modal logic , 1997, Applied logic series.

[30]  M. de Rijke Advances in intensional logic , 1997 .

[31]  Johan van Benthem,et al.  Modal Languages and Bounded Fragments of Predicate Logic , 1998, J. Philos. Log..

[32]  Patrick Blackburn,et al.  Hybrid Completeness , 1998, Log. J. IGPL.

[33]  Patrick Blackburn,et al.  Hybrid Languages and Temporal Logic (Full Version) , 1998 .

[34]  Patrick Blackburn,et al.  A roadmap of the complexity of hybrid logics. , 1999 .

[35]  Miroslava Tzakova,et al.  Tableau Calculi for Hybrid Logics , 1999, TABLEAUX.

[36]  Mario Rodríguez-Artalejo,et al.  Proceedings of the 8th Annual Conference of the EACSL, Madrid, September 1999 , 1999 .

[37]  Maarten Marx,et al.  A Road-Map on Complexity for Hybrid Logics , 1999, CSL.

[38]  Patrick Blackburn,et al.  Hybrid Languages and Temporal Logic , 1999, Log. J. IGPL.

[39]  Patrick Blackburn,et al.  Internalizing labelled deduction , 2000, J. Log. Comput..

[40]  maarten marx,et al.  The Computational Complexity of Hybrid Temporal Logics , 2000, Log. J. IGPL.