Faster Hamiltonian Monte Carlo by Learning Leapfrog Scale

Hamiltonian Monte Carlo samplers have become standard algorithms for MCMC implementations, as opposed to more basic versions, but they still require some amount of tuning and calibration. Exploiting the U-turn criterion of the NUTS algorithm (Hoffman and Gelman, 2014), we propose a version of HMC that relies on the distribution of the integration time of the associated leapfrog integrator. Using in addition the primal-dual averaging method for tuning the step size of the integrator, we achieve an essentially calibration free version of HMC. When compared with the original NUTS on several benchmarks, this algorithm exhibits a significantly improved efficiency.

[1]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[2]  R. Hambleton,et al.  Fundamentals of Item Response Theory , 1991 .

[3]  Nando de Freitas,et al.  Adaptive Hamiltonian and Riemann manifold Monte Carlo samplers , 2013, ICML 2013.

[4]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[5]  S. Duane,et al.  Hybrid Monte Carlo , 1987 .

[6]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[7]  J. M. Sanz-Serna,et al.  Optimal tuning of the hybrid Monte Carlo algorithm , 2010, 1001.4460.

[8]  Michael Betancourt,et al.  A Conceptual Introduction to Hamiltonian Monte Carlo , 2017, 1701.02434.

[9]  M. Betancourt,et al.  Optimizing The Integrator Step Size for Hamiltonian Monte Carlo , 2014, 1411.6669.

[10]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[11]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[12]  Yurii Nesterov,et al.  Primal-dual subgradient methods for convex problems , 2005, Math. Program..

[13]  E. Hairer,et al.  Geometric numerical integration illustrated by the Störmer–Verlet method , 2003, Acta Numerica.

[14]  Marc Lipsitch,et al.  Cholera Modeling: Challenges to Quantitative Analysis and Predicting the Impact of Interventions , 2012, Epidemiology.

[15]  David Dunson,et al.  Recycling intermediate steps to improve Hamiltonian Monte Carlo , 2015 .