Growth behavior and sensing properties of nanograins in CuO nanofibers

[1]  J. Park,et al.  Growth of nanograins in TiO2 nanofibers synthesized by electrospinning. , 2010, Journal of nanoscience and nanotechnology.

[2]  J. Park,et al.  Stabilization of the anatase phase of Ti1−xSnxO2 (x < 0.5) nanofibers , 2010 .

[3]  Dong Xiang,et al.  Metal Oxide Gas Sensors: Sensitivity and Influencing Factors , 2010, Sensors.

[4]  P. Shen,et al.  Onset coarsening/coalescence of cobalt oxides in the form of nanoplates versus equi-axed micron particles , 2010 .

[5]  Sun-Woo Choi,et al.  Synthesis of SnO2–ZnO core–shell nanofibers via a novel two-step process and their gas sensing properties , 2009, Nanotechnology.

[6]  Sun-Woo Choi,et al.  Synthesis and Gas Sensing Properties of TiO2–ZnO Core‐Shell Nanofibers , 2009 .

[7]  Wei Zheng,et al.  Electrospun palladium (IV)-doped copper oxide composite nanofibers for non-enzymatic glucose sensors , 2009 .

[8]  A. Bandyopadhyay,et al.  Influence of crystallinity on CO gas sensing for TiO2 films , 2009 .

[9]  J. Park,et al.  Growth of Nanograins in Electrospun ZnO Nanofibers , 2009 .

[10]  Zuxun Zhang,et al.  Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors , 2009, Nanotechnology.

[11]  Rui Wang,et al.  Preparation of Cu–Zn/ZnO core-shell nanocomposite by wire electrical explosion and precipitation process in aqueous solution and CO sensing properties , 2009 .

[12]  In-Sung Hwang,et al.  CuO nanowire gas sensors for air quality control in automotive cabin , 2008 .

[13]  Huiqin Chen,et al.  Large Scale Fabrication of Single-Crystal CuO Nanoplatelets Using a Template-Free Hydrothermal Approach , 2008 .

[14]  Xiaoguang Gao,et al.  Gas-sensing properties of hollow and hierarchical copper oxide microspheres , 2007 .

[15]  Charles M. Lieber,et al.  Nanoelectronics from the bottom up. , 2007, Nature materials.

[16]  S. Seal,et al.  One dimensional nanostructured materials , 2007, Progress in Materials Science.

[17]  Charles M Lieber,et al.  Large-area blown bubble films of aligned nanowires and carbon nanotubes. , 2007, Nature nanotechnology.

[18]  Lei Liao,et al.  From Copper Nanocrystalline to CuO Nanoneedle Array: Synthesis, Growth Mechanism, and Properties , 2007 .

[19]  F. Yen,et al.  Microstructure-controlled effects on temperature reduction of α-Al2O3 crystallite formation , 2007 .

[20]  W. Pan,et al.  Fabrication, assembly, and electrical characterization of CuO nanofibers , 2006 .

[21]  M. Bognitzki,et al.  Preparation of Sub‐micrometer Copper Fibers via Electrospinning , 2006 .

[22]  Pelagia-Irene Gouma,et al.  Electrospun composite nanofibers for functional applications , 2006 .

[23]  T. Lim,et al.  An Introduction to Electrospinning and Nanofibers , 2005 .

[24]  Ghenadii Korotcenkov,et al.  Gas Response Control Through Structural and Chemical Modification of Metal Oxide Films: State of the Art and Approaches , 2005 .

[25]  N. Xu,et al.  Effects of light illumination on field emission from CuO nanobelt arrays , 2005 .

[26]  Jung-Han Kim,et al.  Microstructure and gas-sensing properties of thick film sensor using nanophase SnO2 powder , 2004 .

[27]  Rajeev Kumar,et al.  Response speed of SnO2-based H2S gas sensors with CuO nanoparticles , 2004 .

[28]  C. Shek,et al.  Grain growth kinetics of nanocrystalline SnO2 for long-term isothermal annealing , 2003 .

[29]  Chien-Te Hsieh,et al.  Synthesis of well-ordered CuO nanofibers by a self-catalytic growth mechanism , 2003 .

[30]  Zu-liang Liu,et al.  A simple wet-chemical synthesis and characterization of CuO nanorods , 2003 .

[31]  Stanko Hočevar,et al.  A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO–CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen , 2002 .

[32]  A. Macdonald Superconductivity: Copper oxides get charged up , 2001, Nature.

[33]  A. Gedanken,et al.  Sonochemical Proparation and Characterization of Nanocrystalline Copper Oxide Embedded in Poly(vinyl Alcohol) and its Effect on Crystal Growth of Copper Oxide , 2001 .

[34]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[35]  W. S. Li,et al.  Raman spectra of CuO nanocrystals , 1999 .

[36]  M. Rahaman Ceramic Processing and Sintering , 1995 .

[37]  Parravicini,et al.  Optical gap of CuO. , 1995, Physical review. B, Condensed matter.

[38]  D. Vlachos,et al.  Transient effects of tin oxide CO sensors in the presence of water vapor , 1993 .

[39]  Yu,et al.  Raman study of CuO single crystals. , 1990, Physical review. B, Condensed matter.

[40]  J. Chrzanowski,et al.  Raman scattering from cupric oxide , 1989 .

[41]  Josae A. Rodraiguez,et al.  Synthesis, properties, and applications of oxide nanomaterials , 2007 .