Noise analysis for high-fidelity quantum entangling gates in an anharmonic linear Paul trap

The realization of high fidelity quantum gates in a multi-qubit system, with a typical target set at 99.9%, is a critical requirement for the implementation of fault-tolerant quantum computation. To reach this level of fidelity, one needs to carefully analyze the noises and imperfections in the experimental system and optimize the gate operations to mitigate their effects. Here, we consider one of the leading experimental systems for the fault-tolerant quantum computation, ions in an anharmonic linear Paul trap, and optimize entangling quantum gates using segmented laser pulses with the assistance of all the collective transverse phonon modes of the ion crystal. We present detailed analyses of the effects of various kinds of intrinsic experimental noises as well as errors from imperfect experimental controls. Through explicit calculations, we find the requirements on these relevant noise levels and control precisions to achieve the targeted high fidelity of 99.9% for the entangling quantum gates in a multi-ion crystal.

[1]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[2]  W. Magnus On the exponential solution of differential equations for a linear operator , 1954 .

[3]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[4]  Richard Kueng,et al.  Comparing Experiments to the Fault-Tolerance Threshold. , 2015, Physical review letters.

[5]  C Figgatt,et al.  Optimal quantum control of multimode couplings between trapped ion qubits for scalable entanglement. , 2014, Physical review letters.

[6]  L. Deslauriers,et al.  T-junction ion trap array for two-dimensional ion shuttling, storage, and manipulation , 2005, quant-ph/0508097.

[7]  John Watrous,et al.  Semidefinite Programs for Completely Bounded Norms , 2009, Theory Comput..

[8]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[9]  Mauricio Gutierrez,et al.  Simulating the performance of a distance-3 surface code in a linear ion trap , 2017, 1710.01378.

[10]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[11]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[12]  J Mizrahi,et al.  Ultrafast gates for single atomic qubits. , 2010, Physical review letters.

[13]  L.-M. Duan,et al.  Quantum Computation under Micromotion in a Planar Ion Crystal , 2014, Scientific Reports.

[14]  Yasunobu Nakamura,et al.  Quantum computers , 2010, Nature.

[15]  W. Marsden I and J , 2012 .

[16]  Dubin,et al.  Theory of structural phase transitions in a trapped Coulomb crystal. , 1993, Physical review letters.

[17]  David Mumford,et al.  Communications on Pure and Applied Mathematics , 1989 .

[18]  L-M Duan,et al.  Phase control of trapped ion quantum gates , 2005 .

[19]  Joel J. Wallman,et al.  Bounding quantum gate error rate based on reported average fidelity , 2015, 1501.04932.

[20]  E. Knill,et al.  Realization of quantum error correction , 2004, Nature.

[21]  C. Monroe,et al.  Large-scale quantum computation in an anharmonic linear ion trap , 2009, 0901.0579.

[22]  M. A. Rowe,et al.  Heating of trapped ions from the quantum ground state , 2000 .

[23]  J. Britton,et al.  Quantum information processing with trapped ions , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[24]  Christopher J. Ballance,et al.  High-Fidelity Quantum Logic in Ca+ , 2017 .

[25]  Krysta Marie Svore,et al.  Low-distance Surface Codes under Realistic Quantum Noise , 2014, ArXiv.

[26]  T. Monz,et al.  Realization of a scalable Shor algorithm , 2015, Science.

[27]  Shi-Liang Zhu,et al.  Arbitrary-speed quantum gates within large ion crystals through minimum control of laser beams , 2006 .

[28]  T. R. Tan,et al.  High-Fidelity Universal Gate Set for ^{9}Be^{+} Ion Qubits. , 2016, Physical review letters.

[29]  C. F. Roos,et al.  Nonlinear coupling of continuous variables at the single quantum level , 2008 .

[30]  Margarita A. Man’ko,et al.  Journal of Optics B: Quantum and Semiclassical Optics , 2003 .

[31]  Guin-Dar Lin Quantum simulation with ultracold atoms and trapped ions , 2010 .

[32]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[33]  A. Retzker,et al.  Modes of oscillation in radiofrequency Paul traps , 2012, 1206.4006.

[34]  Daniel Nigg,et al.  Experimental Repetitive Quantum Error Correction , 2011, Science.

[35]  Andrew M. Steane The ion trap quantum information processor , 1996 .

[36]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[37]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[38]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[39]  N. Linke,et al.  High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. , 2015, Physical review letters.

[40]  Shi-Liang Zhu,et al.  Trapped ion quantum computation with transverse phonon modes. , 2006, Physical review letters.

[41]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.