Mathematics of operations research
暂无分享,去创建一个
[1] Alexander Schrijver,et al. Combinatorial optimization. Polyhedra and efficiency. , 2003 .
[2] Kazuo Murota,et al. Valuated Matroid Intersection I: Optimality Criteria , 1996, SIAM J. Discret. Math..
[3] Vahab S. Mirrokni,et al. Maximizing Nonmonotone Submodular Functions under Matroid or Knapsack Constraints , 2009, SIAM J. Discret. Math..
[4] Kazuo Murota,et al. Valuated matroid intersection, I: optimality criteria, II: algorithms , 1996 .
[5] Chandra Chekuri,et al. Submodular function maximization via the multilinear relaxation and contention resolution schemes , 2011, STOC '11.
[6] Satoko Moriguchi,et al. Discrete L-/ M-Convex Function Minimization Based on Continuous Relaxation , 2007 .
[7] Faruk Gul,et al. WALRASIAN EQUILIBRIUM WITH GROSS SUBSTITUTES , 1999 .
[8] Joseph Naor,et al. A Unified Continuous Greedy Algorithm for Submodular Maximization , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.
[9] Akiyoshi Shioura,et al. On the Pipage Rounding Algorithm for Submodular Function Maximization - a View from Discrete Convex Analysis , 2009, Discret. Math. Algorithms Appl..
[10] R. Ravi,et al. The Constrained Minimum Spanning Tree Problem (Extended Abstract) , 1996, SWAT.
[11] Uriel Feige,et al. On maximizing welfare when utility functions are subadditive , 2006, STOC '06.
[12] András Frank,et al. Generalized polymatroids and submodular flows , 1988, Math. Program..
[13] Daniel Lehmann,et al. Combinatorial auctions with decreasing marginal utilities , 2001, EC '01.
[14] Kazuo Murota,et al. Convexity and Steinitz's Exchange Property , 1996, IPCO.
[15] J. G. Pierce,et al. Geometric Algorithms and Combinatorial Optimization , 2016 .
[16] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[17] Guochuan Zhang,et al. A constrained minimum spanning tree problem , 2000, Comput. Oper. Res..
[18] Fabrizio Grandoni,et al. Budgeted matching and budgeted matroid intersection via the gasoline puzzle , 2008, Math. Program..
[19] Kazuo Murota,et al. MATHEMATICAL ENGINEERING TECHNICAL REPORTS Recent Developments in Discrete Convex Analysis , 2008 .
[20] Daniel Lehmann,et al. Presentation and structure of substitutes valuations , 2004, EC '04.
[21] L. Wolsey. Maximising Real-Valued Submodular Functions: Primal and Dual Heuristics for Location Problems , 1982, Math. Oper. Res..
[22] Kazuo Murota,et al. M-Convex Function on Generalized Polymatroid , 1999, Math. Oper. Res..
[23] N. Nisan,et al. Algorithmic Game Theory: Combinatorial Auctions , 2007 .
[24] Jan Vondrák,et al. Multi-budgeted matchings and matroid intersection via dependent rounding , 2011, SODA '11.
[25] V. Crawford,et al. Job Matching, Coalition Formation, and Gross Substitutes , 1982 .
[26] Michel Gendreau,et al. Combinatorial auctions , 2007, Ann. Oper. Res..
[27] Kazuo Murota,et al. Discrete convex analysis , 1998, Math. Program..
[28] Nimrod Megiddo,et al. Combinatorial optimization with rational objective functions , 1978, Math. Oper. Res..
[29] Kazuo Murota,et al. New characterizations of M-convex functions and their applications to economic equilibrium models with indivisibilities , 2003, Discret. Appl. Math..
[30] Hadas Shachnai,et al. Approximations for Monotone and Nonmonotone Submodular Maximization with Knapsack Constraints , 2013, Math. Oper. Res..
[31] Zaifu Yang,et al. A Note on Kelso and Crawford's Gross Substitutes Condition , 2003, Math. Oper. Res..
[32] S. Rassenti,et al. Combinatorial Auction , 2008 .
[33] Jan Vondrák,et al. Maximizing a Monotone Submodular Function Subject to a Matroid Constraint , 2011, SIAM J. Comput..
[34] Maxim Sviridenko,et al. A note on maximizing a submodular set function subject to a knapsack constraint , 2004, Oper. Res. Lett..
[35] Fabrizio Grandoni,et al. Approximation Schemes for Multi-Budgeted Independence Systems , 2010, ESA.
[36] Nobuyuki Tsuchimura,et al. Continuous relaxation algorithm for discrete quasi L-convex function minimization , 2009 .
[37] Lawrence M. Ausubel,et al. Ascending Auctions with Package Bidding , 2002 .
[38] Kazuo Murota,et al. Extension of M-Convexity and L-Convexity to Polyhedral Convex Functions , 1999, Adv. Appl. Math..
[39] Jan Vondrák,et al. Maximizing a Submodular Set Function Subject to a Matroid Constraint (Extended Abstract) , 2007, IPCO.
[40] Kazuo Murota,et al. Application of M-Convex Submodular Flow Problem to Mathematical Economics , 2001, ISAAC.
[41] Brian W. Kernighan,et al. An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..
[42] Hadas Shachnai,et al. Maximizing submodular set functions subject to multiple linear constraints , 2009, SODA.