Mathematics of operations research

We consider the maximization of a gross substitutes utility function under budget constraints. This problem naturally arises in applications such as exchange economies in mathematical economics and combinatorial auctions in algorithmic game theory. We show that this problem admits a polynomial-time approximation scheme PTAS. More generally, we present a PTAS for maximizing a discrete concave function called an M♮-concave function under budget constraints. Our PTAS is based on rounding an optimal solution of a continuous relaxation problem, which is shown to be solvable in polynomial time by the ellipsoid method. We also consider the maximization of the sum of two M♮-concave functions under a single budget constraint. This problem is a generalization of the budgeted max-weight matroid intersection problem to the one with certain nonlinear objective functions. We show that this problem also admits a PTAS.

[1]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[2]  Kazuo Murota,et al.  Valuated Matroid Intersection I: Optimality Criteria , 1996, SIAM J. Discret. Math..

[3]  Vahab S. Mirrokni,et al.  Maximizing Nonmonotone Submodular Functions under Matroid or Knapsack Constraints , 2009, SIAM J. Discret. Math..

[4]  Kazuo Murota,et al.  Valuated matroid intersection, I: optimality criteria, II: algorithms , 1996 .

[5]  Chandra Chekuri,et al.  Submodular function maximization via the multilinear relaxation and contention resolution schemes , 2011, STOC '11.

[6]  Satoko Moriguchi,et al.  Discrete L-/ M-Convex Function Minimization Based on Continuous Relaxation , 2007 .

[7]  Faruk Gul,et al.  WALRASIAN EQUILIBRIUM WITH GROSS SUBSTITUTES , 1999 .

[8]  Joseph Naor,et al.  A Unified Continuous Greedy Algorithm for Submodular Maximization , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[9]  Akiyoshi Shioura,et al.  On the Pipage Rounding Algorithm for Submodular Function Maximization - a View from Discrete Convex Analysis , 2009, Discret. Math. Algorithms Appl..

[10]  R. Ravi,et al.  The Constrained Minimum Spanning Tree Problem (Extended Abstract) , 1996, SWAT.

[11]  Uriel Feige,et al.  On maximizing welfare when utility functions are subadditive , 2006, STOC '06.

[12]  András Frank,et al.  Generalized polymatroids and submodular flows , 1988, Math. Program..

[13]  Daniel Lehmann,et al.  Combinatorial auctions with decreasing marginal utilities , 2001, EC '01.

[14]  Kazuo Murota,et al.  Convexity and Steinitz's Exchange Property , 1996, IPCO.

[15]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[16]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[17]  Guochuan Zhang,et al.  A constrained minimum spanning tree problem , 2000, Comput. Oper. Res..

[18]  Fabrizio Grandoni,et al.  Budgeted matching and budgeted matroid intersection via the gasoline puzzle , 2008, Math. Program..

[19]  Kazuo Murota,et al.  MATHEMATICAL ENGINEERING TECHNICAL REPORTS Recent Developments in Discrete Convex Analysis , 2008 .

[20]  Daniel Lehmann,et al.  Presentation and structure of substitutes valuations , 2004, EC '04.

[21]  L. Wolsey Maximising Real-Valued Submodular Functions: Primal and Dual Heuristics for Location Problems , 1982, Math. Oper. Res..

[22]  Kazuo Murota,et al.  M-Convex Function on Generalized Polymatroid , 1999, Math. Oper. Res..

[23]  N. Nisan,et al.  Algorithmic Game Theory: Combinatorial Auctions , 2007 .

[24]  Jan Vondrák,et al.  Multi-budgeted matchings and matroid intersection via dependent rounding , 2011, SODA '11.

[25]  V. Crawford,et al.  Job Matching, Coalition Formation, and Gross Substitutes , 1982 .

[26]  Michel Gendreau,et al.  Combinatorial auctions , 2007, Ann. Oper. Res..

[27]  Kazuo Murota,et al.  Discrete convex analysis , 1998, Math. Program..

[28]  Nimrod Megiddo,et al.  Combinatorial optimization with rational objective functions , 1978, Math. Oper. Res..

[29]  Kazuo Murota,et al.  New characterizations of M-convex functions and their applications to economic equilibrium models with indivisibilities , 2003, Discret. Appl. Math..

[30]  Hadas Shachnai,et al.  Approximations for Monotone and Nonmonotone Submodular Maximization with Knapsack Constraints , 2013, Math. Oper. Res..

[31]  Zaifu Yang,et al.  A Note on Kelso and Crawford's Gross Substitutes Condition , 2003, Math. Oper. Res..

[32]  S. Rassenti,et al.  Combinatorial Auction , 2008 .

[33]  Jan Vondrák,et al.  Maximizing a Monotone Submodular Function Subject to a Matroid Constraint , 2011, SIAM J. Comput..

[34]  Maxim Sviridenko,et al.  A note on maximizing a submodular set function subject to a knapsack constraint , 2004, Oper. Res. Lett..

[35]  Fabrizio Grandoni,et al.  Approximation Schemes for Multi-Budgeted Independence Systems , 2010, ESA.

[36]  Nobuyuki Tsuchimura,et al.  Continuous relaxation algorithm for discrete quasi L-convex function minimization , 2009 .

[37]  Lawrence M. Ausubel,et al.  Ascending Auctions with Package Bidding , 2002 .

[38]  Kazuo Murota,et al.  Extension of M-Convexity and L-Convexity to Polyhedral Convex Functions , 1999, Adv. Appl. Math..

[39]  Jan Vondrák,et al.  Maximizing a Submodular Set Function Subject to a Matroid Constraint (Extended Abstract) , 2007, IPCO.

[40]  Kazuo Murota,et al.  Application of M-Convex Submodular Flow Problem to Mathematical Economics , 2001, ISAAC.

[41]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[42]  Hadas Shachnai,et al.  Maximizing submodular set functions subject to multiple linear constraints , 2009, SODA.