Cyber-aggression, Cyberbullying, and Cyber-grooming

Cyber-aggression, cyberbullying, and cyber-grooming are distinctive and similar phenomena that represent the objectionable content appearing on online social media. Timely detection of the objectionable content is very important for its prevention and reduction. This article explores and spotlights diversity of definitions of cyber-aggression, cyberbulling, and cyber-grooming; analyzes current categorization systems and taxonomies; identifies the targets, target categories, and subcategories of the subjects of the objectionable content research; analyzes the ambiguity of the linguistic terms in the domain; reviews present databases gathered for researching the field; explores types of features used for modeling systems for automatic detection; and examines methods for automatic detection and/or prediction of the objectionable content. The results point to directions of system development for tracing transformations of objectionable content over time on different online social platforms.

[1]  John Yearwood,et al.  Detection of child exploiting chats from a mixed chat dataset as a text classification task , 2011, ALTA.

[2]  April Kontostathis,et al.  Learning to Identify Internet Sexual Predation , 2011, Int. J. Electron. Commer..

[3]  Conor Mc Guckin,et al.  Cyberbullying or Cyber Aggression?: A Review of Existing Definitions of Cyber-Based Peer-to-Peer Aggression , 2015 .

[4]  Ying Chen,et al.  Detecting Offensive Language in Social Media to Protect Adolescent Online Safety , 2012, 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing.

[5]  Kelly Reynolds,et al.  Using Machine Learning to Detect Cyberbullying , 2011, 2011 10th International Conference on Machine Learning and Applications and Workshops.

[6]  S Lefophane,et al.  Mitigating Online Sexual Grooming Cybercrime on Social Media Using Machine Learning: A Desktop Survey , 2018, 2018 International Conference on Advances in Big Data, Computing and Data Communication Systems (icABCD).

[7]  David Robinson,et al.  Hate Speech Detection on Twitter: Feature Engineering v.s. Feature Selection , 2018, ESWC.

[8]  Elizabeth F. Churchill,et al.  Using Crowdsourcing to Improve Profanity Detection , 2012, AAAI Spring Symposium: Wisdom of the Crowd.

[9]  Shervin Malmasi,et al.  Challenges in discriminating profanity from hate speech , 2017, J. Exp. Theor. Artif. Intell..

[10]  Traian Rebedea,et al.  Detecting sexual predators in chats using behavioral features and imbalanced learning* , 2017, Natural Language Engineering.

[11]  Björn Gambäck,et al.  Using Convolutional Neural Networks to Classify Hate-Speech , 2017, ALW@ACL.

[12]  Fabrício Benevenuto,et al.  Analyzing the Targets of Hate in Online Social Media , 2016, ICWSM.

[13]  Xiaochang Peng,et al.  Exploring Deep Multimodal Fusion of Text and Photo for Hate Speech Classification , 2019, Proceedings of the Third Workshop on Abusive Language Online.

[14]  Agostino Poggi,et al.  A Survey on Troll Detection , 2020, Future Internet.

[15]  Rachel O’Connell Cyberspace A TYPOLOGY OF CHILD CYBERSEXPLOITATION AND ONLINE GROOMING PRACTICES , 2003 .

[16]  Michael Wiegand,et al.  A Survey on Hate Speech Detection using Natural Language Processing , 2017, SocialNLP@EACL.

[17]  R. Ordelman,et al.  Improved cyberbullying detection using gender information , 2012 .

[18]  Walter Daelemans,et al.  Automatic Detection and Prevention of Cyberbullying , 2015 .

[19]  Lucas Dixon,et al.  Ex Machina: Personal Attacks Seen at Scale , 2016, WWW.

[20]  Hui-Po Su,et al.  Rephrasing Profanity in Chinese Text , 2017, ALW@ACL.

[21]  Pete Burnap,et al.  Us and them: identifying cyber hate on Twitter across multiple protected characteristics , 2016, EPJ Data Science.

[22]  Jianping Zeng,et al.  Web objectionable text content detection using topic modeling technique , 2013, Expert Syst. Appl..

[23]  Cody Buntain,et al.  A Large Labeled Corpus for Online Harassment Research , 2017, WebSci.

[24]  Simonetta Vietri,et al.  Mining Offensive Language on Social Media , 2017, CLiC-it.

[25]  Paolo Rosso,et al.  Exploring high-level features for detecting cyberpedophilia , 2014, Comput. Speech Lang..

[26]  David E. Losada,et al.  Combining Psycho-linguistic, Content-based and Chat-based Features to Detect Predation in Chatrooms , 2014, J. Univers. Comput. Sci..

[27]  Cornelia Caragea,et al.  Content-Driven Detection of Cyberbullying on the Instagram Social Network , 2016, IJCAI.

[28]  Patrick Bours,et al.  Detection of Cyber Grooming in Online Conversation , 2019, 2019 IEEE International Workshop on Information Forensics and Security (WIFS).

[29]  Amit P. Sheth,et al.  A Quality Type-aware Annotated Corpus and Lexicon for Harassment Research , 2018, WebSci.

[30]  Patricio Zambrano,et al.  Technical Mapping of the Grooming Anatomy Using Machine Learning Paradigms: An Information Security Approach , 2019, IEEE Access.

[31]  Yulan He,et al.  Approaches to Automated Detection of Cyberbullying: A Survey , 2020, IEEE Transactions on Affective Computing.

[32]  Henry Lieberman,et al.  Modeling the Detection of Textual Cyberbullying , 2011, The Social Mobile Web.

[33]  Mamoru Komachi,et al.  Annotation and Classification of Toxicity for Thai Twitter , 2018 .

[34]  Connie S. Barber,et al.  Deconstructing the Online Grooming of Youth: Toward Improved Information Systems for Detection of Online Sexual Predators , 2014, ICIS.

[35]  Maxime Meyer,et al.  Machine learning to detect online grooming , 2015 .

[36]  Roshani Ade,et al.  A Review on Imbalanced Learning Methods , 2015 .

[37]  D. Grigg Cyber-Aggression: Definition and Concept of Cyberbullying , 2010, Australian Journal of Guidance and Counselling.

[38]  Zhi Xu,et al.  Filtering Offensive Language in Online Communities using Grammatical Relations , 2010 .

[39]  Ona de Gibert,et al.  Hate Speech Dataset from a White Supremacy Forum , 2018, ALW.

[40]  Ika Alfina,et al.  Hate speech detection in the Indonesian language: A dataset and preliminary study , 2017, 2017 International Conference on Advanced Computer Science and Information Systems (ICACSIS).

[41]  Ingmar Weber,et al.  Automated Hate Speech Detection and the Problem of Offensive Language , 2017, ICWSM.

[42]  Jing Zhou,et al.  Hate Speech Detection with Comment Embeddings , 2015, WWW.

[43]  Alexander F. Gelbukh,et al.  Aggression Detection in Social Media: Using Deep Neural Networks, Data Augmentation, and Pseudo Labeling , 2018, TRAC@COLING 2018.

[44]  Albert Ali Salah,et al.  Automatic analysis and identification of verbal aggression and abusive behaviors for online social games , 2015, Comput. Hum. Behav..

[45]  John Pavlopoulos,et al.  Deep Learning for User Comment Moderation , 2017, ALW@ACL.

[46]  Teresa Gonçalves,et al.  Fully Connected Neural Network with Advance Preprocessor to Identify Aggression over Facebook and Twitter , 2018, TRAC@COLING 2018.

[47]  David Robinson,et al.  Detecting Hate Speech on Twitter Using a Convolution-GRU Based Deep Neural Network , 2018, ESWC.

[48]  Walter Daelemans,et al.  The Automated Detection of Racist Discourse in Dutch Social Media , 2016 .

[49]  Stan Matwin,et al.  Offensive Language Detection Using Multi-level Classification , 2010, Canadian Conference on AI.

[50]  Indra Budi,et al.  A Dataset and Preliminaries Study for Abusive Language Detection in Indonesian Social Media , 2018 .

[51]  Walid Magdy,et al.  Abusive Language Detection on Arabic Social Media , 2017, ALW@ACL.

[52]  Gianluca Stringhini,et al.  Mean Birds: Detecting Aggression and Bullying on Twitter , 2017, WebSci.

[53]  Paul Rayson,et al.  A Systematic Survey of Online Data Mining Technology Intended for Law Enforcement , 2015, ACM Comput. Surv..

[54]  Lei Gao,et al.  Recognizing Explicit and Implicit Hate Speech Using a Weakly Supervised Two-path Bootstrapping Approach , 2017, IJCNLP.

[55]  Adam Krzyzak,et al.  Recognizing Predatory Chat Documents using Semi-supervised Anomaly Detection , 2016, Document Recognition and Retrieval.

[56]  Jack Grieve,et al.  Dimensions of Abusive Language on Twitter , 2017, ALW@ACL.

[57]  Ponnurangam Kumaraguru,et al.  Characterizing Pedophile Conversations on the Internet using Online Grooming , 2012, ArXiv.

[58]  Eduardo Freire Nakamura,et al.  Detecting Hate, Offensive, and Regular Speech in Short Comments , 2017, WebMedia.

[59]  Gianluca Stringhini,et al.  Large Scale Crowdsourcing and Characterization of Twitter Abusive Behavior , 2018, ICWSM.

[60]  Hugo Jair Escalante,et al.  A Two-step Approach for Effective Detection of Misbehaving Users in Chats , 2012, CLEF.

[61]  Nick Pendar,et al.  Toward Spotting the Pedophile Telling victim from predator in text chats , 2007, International Conference on Semantic Computing (ICSC 2007).

[62]  Guy De Pauw,et al.  Automatic Detection of Online Jihadist Hate Speech , 2018, ArXiv.

[63]  Felice Dell'Orletta,et al.  Hate Me, Hate Me Not: Hate Speech Detection on Facebook , 2017, ITASEC.

[64]  Ping Liu,et al.  Forecasting the presence and intensity of hostility on Instagram using linguistic and social features , 2018, ICWSM.

[65]  Athena Vakali,et al.  A Unified Deep Learning Architecture for Abuse Detection , 2018, WebSci.

[66]  Ritesh Kumar,et al.  Aggression-annotated Corpus of Hindi-English Code-mixed Data , 2018, LREC.

[67]  Kenji Araki,et al.  Sustainable cyberbullying detection with category-maximized relevance of harmful phrases and double-filtered automatic optimization , 2016, Int. J. Child Comput. Interact..

[68]  Virgílio A. F. Almeida,et al.  "Like Sheep Among Wolves": Characterizing Hateful Users on Twitter , 2017, ArXiv.

[69]  N. B. Anuar,et al.  Cyber parental control: A bibliometric study , 2020 .

[70]  Henry Lieberman,et al.  Common Sense Reasoning for Detection, Prevention, and Mitigation of Cyberbullying , 2012, TIIS.

[71]  Dolf Trieschnigg,et al.  Expert knowledge for automatic detection of bullies in social networks , 2013 .

[72]  Aida Mustapha,et al.  A review of cyberbullying detection: An overview , 2013, 2013 13th International Conference on Intellient Systems Design and Applications.

[73]  Wojciech Jaworski,et al.  Application of linguistic cues in the analysis of language of hate groups , 2015, Comput. Sci..

[74]  Daniela Moctezuma,et al.  INGEOTEC at MEX-A3T: Author Profiling and Aggressiveness Analysis in Twitter Using μTC and EvoMSA , 2018, IberEval@SEPLN.

[75]  Xhemal Zenuni,et al.  Automatic hate speech detection in online contents using latent semantic analysis , 2017 .

[76]  Hugo Jair Escalante,et al.  Early detection of deception and aggressiveness using profile-based representations , 2017, Expert Syst. Appl..

[77]  Björn Gambäck,et al.  The Effects of User Features on Twitter Hate Speech Detection , 2018, ALW.

[78]  April Kontostathis,et al.  Text Mining and Cybercrime , 2010 .

[79]  Alan F. Smeaton,et al.  Classifying racist texts using a support vector machine , 2004, SIGIR '04.

[80]  Kasturi Dewi Varathan,et al.  Cybercrime detection in online communications: The experimental case of cyberbullying detection in the Twitter network , 2016, Comput. Hum. Behav..

[81]  Mai ElSherief,et al.  Hierarchical CVAE for Fine-Grained Hate Speech Classification , 2018, EMNLP.

[82]  Fergyanto E. Gunawan,et al.  Detecting online child grooming conversation , 2016, 2016 11th International Conference on Knowledge, Information and Creativity Support Systems (KICSS).

[83]  Cristina Bosco,et al.  An Impossible Dialogue! Nominal Utterances and Populist Rhetoric in an Italian Twitter Corpus of Hate Speech against Immigrants , 2018, LREC.

[84]  Cícero Nogueira dos Santos,et al.  Fighting Offensive Language on Social Media with Unsupervised Text Style Transfer , 2018, ACL.

[85]  Alexei Bastidas,et al.  Harassment detection: a benchmark on the #HackHarassment dataset , 2016, ArXiv.

[86]  Shervin Malmasi,et al.  Detecting Hate Speech in Social Media , 2017, RANLP.

[87]  Jie Li,et al.  Grooming Detection using Fuzzy-Rough Feature Selection and Text Classification , 2018, 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[88]  Denis Gordeev,et al.  Automatic Detection of Verbal Aggression for Russian and American Imageboards , 2016 .

[89]  Tomaz Erjavec,et al.  Legal Framework, Dataset and Annotation Schema for Socially Unacceptable Online Discourse Practices in Slovene , 2017, ALW@ACL.

[90]  Thamar Solorio,et al.  Detecting Nastiness in Social Media , 2017, ALW@ACL.

[91]  Njagi Dennis Gitari,et al.  A Lexicon-based Approach for Hate Speech Detection , 2015, MUE 2015.

[92]  Lynne Edwards,et al.  ChatCoder: Toward the Tracking and Categorization of Internet Predators , 2009 .

[93]  Brian D. Davison,et al.  Detection of Harassment on Web 2.0 , 2009 .

[94]  Daniele Quercia,et al.  The Social World of Content Abusers in Community Question Answering , 2015, WWW.

[95]  Björn Ross,et al.  Measuring the Reliability of Hate Speech Annotations: The Case of the European Refugee Crisis , 2016, ArXiv.

[96]  Igor Santos,et al.  Supervised machine learning for the detection of troll profiles in twitter social network: application to a real case of cyberbullying , 2015, Log. J. IGPL.

[97]  Nektaria Potha,et al.  Cyberbullying Detection using Time Series Modeling , 2014, 2014 IEEE International Conference on Data Mining Workshop.

[98]  Tomoaki Ohtsuki,et al.  Hate Speech on Twitter: A Pragmatic Approach to Collect Hateful and Offensive Expressions and Perform Hate Speech Detection , 2018, IEEE Access.

[99]  Ankit Srivastava,et al.  Automatic Classification of Abusive Language and Personal Attacks in Various Forms of Online Communication , 2017, GSCL.

[100]  Xue Li,et al.  An Effective Approach for Cyberbullying Detection , 2013 .

[101]  Matthew Leighton Williams,et al.  Cyber Hate Speech on Twitter: An Application of Machine Classification and Statistical Modeling for Policy and Decision Making , 2015 .

[102]  Dirk Hovy,et al.  Hateful Symbols or Hateful People? Predictive Features for Hate Speech Detection on Twitter , 2016, NAACL.

[103]  Heri Ramampiaro,et al.  Effective hate-speech detection in Twitter data using recurrent neural networks , 2018, Applied Intelligence.

[104]  Peter K. Smith,et al.  Cyberbullying: its nature and impact in secondary school pupils. , 2008, Journal of child psychology and psychiatry, and allied disciplines.

[105]  Viviana Patti,et al.  14-ExLab@UniTo for AMI at IberEval2018: Exploiting Lexical Knowledge for Detecting Misogyny in English and Spanish Tweets , 2018, IberEval@SEPLN.

[106]  Dan Liu,et al.  A Novel Way of Identifying Cyber Predators , 2017, ArXiv.

[107]  Manuel Montes-y-Gómez,et al.  Exploration of Misogyny in Spanish and English Tweets , 2018, IberEval@SEPLN.

[108]  Niyati Aggrawal,et al.  Detection of Offensive Tweets: A Comparative Study , 2018 .

[109]  Fumito Masui,et al.  Learning Deep on Cyberbullying is Always Better Than Brute Force , 2017, LaCATODA@IJCAI.

[110]  Joel R. Tetreault,et al.  Do Characters Abuse More Than Words? , 2016, SIGDIAL Conference.

[111]  Julian Togelius,et al.  Detecting Predatory Behavior in Game Chats , 2015, IEEE Transactions on Computational Intelligence and AI in Games.

[112]  Joaquín Padilla Montani,et al.  GermEval 2018 : German Abusive Tweet Detection , 2018 .

[113]  Shivakant Mishra,et al.  Prediction of Cyberbullying Incidents on the Instagram Social Network , 2015, ArXiv.

[114]  Ingmar Weber,et al.  Understanding Abuse: A Typology of Abusive Language Detection Subtasks , 2017, ALW@ACL.

[115]  Mai ElSherief,et al.  Hate Lingo: A Target-based Linguistic Analysis of Hate Speech in Social Media , 2018, ICWSM.

[116]  David E. Losada,et al.  A Learning-Based Approach for the Identification of Sexual Predators in Chat Logs , 2012, CLEF.

[117]  Alexander Panchenko,et al.  Detection of Child Sexual Abuse Media on P2P Networks: Normalization and Classification of Associated Filenames , 2012 .

[118]  Ann Frisén,et al.  Cyberbullying assessment instruments: A systematic review , 2013 .

[119]  Parma Nand,et al.  “How Bullying is this Message?”: A Psychometric Thermometer for Bullying , 2016, COLING.

[120]  Harith Alani,et al.  Detecting Child Grooming Behaviour Patterns on Social Media , 2014, SocInfo.

[121]  Jan Snajder,et al.  Cross-Domain Detection of Abusive Language Online , 2018, ALW.

[122]  E. Cambria,et al.  Do Not Feel The Trolls , 2010 .

[123]  Mária Bieliková,et al.  Improving Moderation of Online Discussions via Interpretable Neural Models , 2018, ALW.

[124]  Walter Daelemans,et al.  Multilingual Cross-domain Perspectives on Online Hate Speech , 2018, ArXiv.

[125]  Michael Castelle,et al.  The Linguistic Ideologies of Deep Abusive Language Classification , 2018, ALW.

[126]  Alexei Bastidas,et al.  Technology Solutions to Combat Online Harassment , 2017, ALW@ACL.

[127]  Ralf Krestel,et al.  Challenges for Toxic Comment Classification: An In-Depth Error Analysis , 2018, ALW.

[128]  Joel R. Tetreault,et al.  Abusive Language Detection in Online User Content , 2016, WWW.

[129]  Lei Gao,et al.  Detecting Online Hate Speech Using Context Aware Models , 2017, RANLP.

[130]  Rogers Prates de Pelle,et al.  Offensive Comments in the Brazilian Web: a dataset and baseline results , 2017 .

[131]  Bernard J. Jansen,et al.  Anatomy of Online Hate: Developing a Taxonomy and Machine Learning Models for Identifying and Classifying Hate in Online News Media , 2018, ICWSM.

[132]  Ralf Krestel,et al.  Delete or not Delete? Semi-Automatic Comment Moderation for the Newsroom , 2018, TRAC@COLING 2018.

[133]  Udo Kruschwitz,et al.  Improving Hate Speech Detection with Deep Learning Ensembles , 2018, LREC.

[134]  Radhika Mamidi,et al.  When does a compliment become sexist? Analysis and classification of ambivalent sexism using twitter data , 2017, NLP+CSS@ACL.

[135]  L. Olson,et al.  Entrapping the Innocent: Toward a Theory of Child Sexual Predators’ Luring Communication , 2007 .

[136]  Pascale Fung,et al.  One-step and Two-step Classification for Abusive Language Detection on Twitter , 2017, ALW@ACL.

[137]  Virgílio A. F. Almeida,et al.  Characterizing and Detecting Hateful Users on Twitter , 2018, ICWSM.

[138]  Cristina Bosco,et al.  Hate Speech Annotation: Analysis of an Italian Twitter Corpus , 2017, CLiC-it.

[139]  Yuzhou Wang,et al.  Locate the Hate: Detecting Tweets against Blacks , 2013, AAAI.

[140]  Jiebo Luo,et al.  Detecting the Hate Code on Social Media , 2017, ICWSM.

[141]  Vasudeva Varma,et al.  Deep Learning for Hate Speech Detection in Tweets , 2017, WWW.

[142]  Carolyn Penstein Rosé,et al.  Detecting offensive tweets via topical feature discovery over a large scale twitter corpus , 2012, CIKM.

[143]  Julia Hirschberg,et al.  Detecting Hate Speech on the World Wide Web , 2012 .

[144]  Catherine Blaya Cyberhate: A review and content analysis of intervention strategies , 2019, Aggression and Violent Behavior.

[145]  Stan Matwin,et al.  Boosting Text Classification Performance on Sexist Tweets by Text Augmentation and Text Generation Using a Combination of Knowledge Graphs , 2018, ALW.

[146]  S. Sax Flame Wars : Automatic Insult Detection , 2016 .

[147]  Amit Awekar,et al.  Deep Learning for Detecting Cyberbullying Across Multiple Social Media Platforms , 2018, ECIR.

[148]  Sérgio Nunes,et al.  A Survey on Automatic Detection of Hate Speech in Text , 2018, ACM Comput. Surv..

[149]  Derek Ruths,et al.  A Web of Hate: Tackling Hateful Speech in Online Social Spaces , 2017, ArXiv.

[150]  Graeme Hirst,et al.  Identifying Sexual Predators by SVM Classification with Lexical and Behavioral Features , 2012, CLEF.

[151]  Kyomin Jung,et al.  Comparative Studies of Detecting Abusive Language on Twitter , 2018, ALW.

[152]  Ahmed Serhrouchni,et al.  A multilingual system for cyberbullying detection: Arabic content detection using machine learning , 2017 .

[153]  Jenq-Haur Wang,et al.  Social Network Hate Speech Detection for Amharic Language , 2018 .

[154]  Fabrício Benevenuto,et al.  A Measurement Study of Hate Speech in Social Media , 2017, HT.

[155]  Paula Cristina Teixeira Fortuna,et al.  Automatic detection of hate speech in text: an overview of the topic and dataset annotation with hierarchical classes , 2017 .