Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling

[1]  S. Snyder,et al.  Cell signaling and neuronal death. , 2007, Annual review of pharmacology and toxicology.

[2]  J. Chai,et al.  Structural basis for modulation of Kv4 K+ channels by auxiliary KChIP subunits , 2007, Nature Neuroscience.

[3]  K. Koch,et al.  Tuning of a Neuronal Calcium Sensor* , 2006, Journal of Biological Chemistry.

[4]  V. Slepak,et al.  Structural Basis for Calcium-induced Inhibition of Rhodopsin Kinase by Recoverin* , 2006, Journal of Biological Chemistry.

[5]  Gang-yi Wu,et al.  Manipulating Kv4.2 identifies a specific component of hippocampal pyramidal neuron A‐current that depends upon Kv4.2 expression , 2006, Journal of neurochemistry.

[6]  Greg L. Hura,et al.  Three-dimensional structure of the KChIP1–Kv4.3 T1 complex reveals a cross-shaped octamer , 2006, Nature Structural &Molecular Biology.

[7]  E. Zrenner,et al.  Mutations in CABP4, the gene encoding the Ca2+-binding protein 4, cause autosomal recessive night blindness. , 2006, American journal of human genetics.

[8]  Stefan Mihalas,et al.  Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by calmodulin with two bound calciums , 2006, Proceedings of the National Academy of Sciences.

[9]  S. Nattel,et al.  C-terminal Domain of Kv4.2 and Associated KChIP2 Interactions Regulate Functional Expression and Gating of Kv4.2* , 2006, Journal of Biological Chemistry.

[10]  Catherine B. Chan,et al.  The Neuronal Ca2+ Sensor Protein Visinin-like Protein-1 Is Expressed in Pancreatic Islets and Regulates Insulin Secretion* , 2006, Journal of Biological Chemistry.

[11]  J. Buxbaum,et al.  Calsenilin interacts with transcriptional co‐repressor C‐terminal binding protein(s) , 2006, Journal of neurochemistry.

[12]  K. Palczewski,et al.  The crystal structure of GCAP3 suggests molecular mechanism of GCAP-linked cone dystrophies. , 2006, Journal of molecular biology.

[13]  A. Jeromin,et al.  Neuronal calcium sensor-1 enhancement of InsP3 receptor activity is inhibited by therapeutic levels of lithium. , 2006, The Journal of clinical investigation.

[14]  C. Jepson,et al.  Interaction between variation in the D2 dopamine receptor (DRD2) and the neuronal calcium sensor-1 (FREQ) genes in predicting response to nicotine replacement therapy for tobacco dependence , 2006, The Pharmacogenomics Journal.

[15]  J. Nerbonne,et al.  The Kv4.2 Potassium Channel Subunit Is Required for Pain Plasticity , 2006, Neuron.

[16]  Joong-Soo Han,et al.  Hippocalcin increases phospholipase D2 expression through extracellular signal‐regulated kinase activation and lysophosphatidic acid potentiates the hippocalcin‐induced phospholipase D2 expression , 2006, Journal of cellular biochemistry.

[17]  R. Levenson,et al.  Calcium‐sensing mechanism in TRPC5 channels contributing to retardation of neurite outgrowth , 2006, The Journal of physiology.

[18]  A. Jeromin,et al.  Novel role of neuronal Ca2+ sensor-1 as a survival factor up-regulated in injured neurons , 2006, The Journal of cell biology.

[19]  R. Burgoyne,et al.  Analysis of the interacting partners of the neuronal calcium‐binding proteins L‐CaBP1, hippocalcin, NCS‐1 and neurocalcin δ , 2006, Proteomics.

[20]  T. Gómez,et al.  The molecular basis for calcium-dependent axon pathfinding , 2006, Nature Reviews Neuroscience.

[21]  Mitsuhiko Ikura,et al.  Genetic polymorphism and protein conformational plasticity in the calmodulin superfamily: Two ways to promote multifunctionality , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[22]  H. Tsubokawa,et al.  Hippocalcin-deficient mice display a defect in cAMP response element-binding protein activation associated with impaired spatial and associative memory , 2005, Neuroscience.

[23]  T. Timmusk,et al.  Structure, alternative splicing, and expression of the human and mouse KCNIP gene family. , 2005, Genomics.

[24]  I. Prior,et al.  Traffic of Kv4 K+ channels mediated by KChIP1 is via a novel post-ER vesicular pathway , 2005, The Journal of cell biology.

[25]  A. Gutiérrez-Adán,et al.  Transcriptional repressor DREAM regulates T‐lymphocyte proliferation and cytokine gene expression , 2005, The EMBO journal.

[26]  R. Burgoyne,et al.  High-affinity interaction of the N-terminal myristoylation motif of the neuronal calcium sensor protein hippocalcin with phosphatidylinositol 4,5-bisphosphate. , 2005, The Biochemical journal.

[27]  O. Pongs,et al.  Contribution of N‐ and C‐terminal channel domains to Kv channel interacting proteins in a mammalian cell line , 2005 .

[28]  B. Thisse,et al.  Neuronal calcium sensor-1 gene ncs-1a is essential for semicircular canal formation in zebrafish inner ear. , 2005, Journal of neurobiology.

[29]  G. Collingridge,et al.  Hippocalcin Functions as a Calcium Sensor in Hippocampal LTD , 2005, Neuron.

[30]  W. Catterall,et al.  Modulation of CaV2.1 Channels by the Neuronal Calcium-Binding Protein Visinin-Like Protein-2 , 2005, The Journal of Neuroscience.

[31]  J. Nerbonne,et al.  KChIP2 modulates the cell surface expression of Kv 1.5-encoded K(+) channels. , 2005, Journal of molecular and cellular cardiology.

[32]  K. Braunewell The darker side of Ca2+ signaling by neuronal Ca2+-sensor proteins: from Alzheimer's disease to cancer. , 2005, Trends in pharmacological sciences.

[33]  S. Schuchmann,et al.  Neuronal Ca2+ sensor protein VILIP-1 affects cGMP signalling of guanylyl cyclase B by regulating clathrin-dependent receptor recycling in hippocampal neurons , 2005, Journal of Cell Science.

[34]  M. Zhu,et al.  Inhibition of TRPC5 channels by Ca2+-binding protein 1 in Xenopus oocytes , 2005, Pflügers Archiv.

[35]  F. Rieke,et al.  Recoverin Improves Rod-Mediated Vision by Enhancing Signal Transmission in the Mouse Retina , 2005, Neuron.

[36]  D. Jo,et al.  Overexpression of calsenilin enhances γ-secretase activity , 2005, Neuroscience Letters.

[37]  James S Trimmer,et al.  Light and electron microscopic analysis of KChIP and Kv4 localization in rat cerebellar granule cells , 2005, The Journal of comparative neurology.

[38]  S. Korn,et al.  Potassium channels , 2005, IEEE Transactions on NanoBioscience.

[39]  G. Thomas,et al.  Interaction of Neuronal Calcium Sensor-1 and ADP-ribosylation Factor 1 Allows Bidirectional Control of Phosphatidylinositol 4-Kinase β and trans-Golgi Network-Plasma Membrane Traffic* , 2005, Journal of Biological Chemistry.

[40]  J. Kukkonen,et al.  Hippocalcin protects against caspase-12-induced and age-dependent neuronal degeneration , 2005, Molecular and Cellular Neuroscience.

[41]  M. Covarrubias,et al.  Molecular physiology and modulation of somatodendritic A-type potassium channels , 2004, Molecular and Cellular Neuroscience.

[42]  U. Heinemann,et al.  Expression analysis of members of the neuronal calcium sensor protein family: combining bioinformatics and Western blot analysis. , 2004, Biochemical and biophysical research communications.

[43]  K. Palczewski,et al.  Guanylate cyclase-activating proteins: structure, function, and diversity. , 2004, Biochemical and biophysical research communications.

[44]  S. Perusini,et al.  Disruption of the NCS‐1/frequenin‐related ncsA gene in Dictyostelium discoideum accelerates development , 2004, Development, growth & differentiation.

[45]  F. Rieke,et al.  Essential role of Ca2+-binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function , 2004, Nature Neuroscience.

[46]  K. Rhodes,et al.  KChIPs and Kv4 α Subunits as Integral Components of A-Type Potassium Channels in Mammalian Brain , 2004, The Journal of Neuroscience.

[47]  P. Santisteban,et al.  Transcriptional Repressor DREAM Interacts with Thyroid Transcription Factor-1 and Regulates Thyroglobulin Gene Expression* , 2004, Journal of Biological Chemistry.

[48]  D. Johnston,et al.  Acquired Dendritic Channelopathy in Temporal Lobe Epilepsy , 2004, Science.

[49]  Andrew W Varga,et al.  Structure and function of Kv4-family transient potassium channels. , 2004, Physiological reviews.

[50]  T. Madsen,et al.  Day-Night Changes in Downstream Regulatory Element Antagonist Modulator/Potassium Channel Interacting Protein Activity Contribute to Circadian Gene Expression in Pineal Gland , 2004, The Journal of Neuroscience.

[51]  M. Sanguinetti,et al.  Novel KChIP2 isoforms increase functional diversity of transient outward potassium currents , 2004, The Journal of physiology.

[52]  D. Baylor,et al.  Recoverin Regulates Light-dependent Phosphodiesterase Activity in Retinal Rods , 2004, The Journal of general physiology.

[53]  F. Haeseleer,et al.  Ca2+-Binding Protein-1 Facilitates and Forms a Postsynaptic Complex with Cav1.2 (L-Type) Ca2+ Channels , 2004, The Journal of Neuroscience.

[54]  R. Parai,et al.  Regulation of Kv4.3 voltage‐dependent gating kinetics by KChIP2 isoforms , 2004, The Journal of physiology.

[55]  A. Dizhoor,et al.  Guanylyl Cyclase-activating Proteins (GCAPs) Are Ca2+/Mg2+ Sensors , 2004, Journal of Biological Chemistry.

[56]  A. Tepikin,et al.  Neuronal Ca2+-sensor proteins: multitalented regulators of neuronal function , 2004, Trends in Neurosciences.

[57]  K. Takeda,et al.  Fission Yeast Homolog of Neuronal Calcium Sensor-1 (Ncs1p) Regulates Sporulation and Confers Calcium Tolerance* , 2004, Journal of Biological Chemistry.

[58]  V. Venkataraman,et al.  Structural, biochemical, and functional characterization of the calcium sensor neurocalcin delta in the inner retinal neurons and its linkage with the rod outer segment membrane guanylate cyclase transduction system. , 2004, Biochemistry.

[59]  K. Kunjilwar,et al.  Structural Insights into the Functional Interaction of KChIP1 with Shal-Type K+ Channels , 2004, Neuron.

[60]  K. Rhodes,et al.  Two N-Terminal Domains of Kv4 K+ Channels Regulate Binding to and Modulation by KChIP1 , 2004, Neuron.

[61]  N. Grigorieff,et al.  Three-Dimensional Structure of Ito Kv4.2-KChIP2 Ion Channels by Electron Microscopy at 21 Å Resolution , 2004, Neuron.

[62]  M. Berridge,et al.  Regulation of InsP3 receptor activity by neuronal Ca2+‐binding proteins , 2004, The EMBO journal.

[63]  F. Gannon Change and continuity , 2004 .

[64]  A. Tepikin,et al.  Calcium-binding Protein 1 Is an Inhibitor of Agonist-evoked, Inositol 1,4,5-Trisphosphate-mediated Calcium Signaling* , 2004, Journal of Biological Chemistry.

[65]  F. Haeseleer,et al.  Ca 2-Binding Protein-1 Facilitates and Forms a Postsynaptic Complex with Cav 1 . 2 ( L-Type ) Ca 2 Channels , 2004 .

[66]  M. Leighton,et al.  Residues within the myristoylation motif determine intracellular targeting of the neuronal Ca2+ sensor protein KChIP1 to post-ER transport vesicles and traffic of Kv4 K+ channels , 2003, Journal of Cell Science.

[67]  A. Tepikin,et al.  Dynamics and calcium sensitivity of the Ca2+/myristoyl switch protein hippocalcin in living cells , 2003, The Journal of cell biology.

[68]  A. Jeromin,et al.  Neuronal Calcium Sensor-1 and Phosphatidylinositol 4-Kinase β Regulate IgE Receptor-Triggered Exocytosis in Cultured Mast Cells 1 , 2003, The Journal of Immunology.

[69]  C. Spilker,et al.  Calcium–myristoyl switch, subcellular localization, and calcium-dependent translocation of the neuronal calcium sensor protein VILIP-3, and comparison with VILIP-1 in hippocampal neurons☆ , 2003, Molecular and Cellular Neuroscience.

[70]  G. Augustine,et al.  Local Calcium Signaling in Neurons , 2003, Neuron.

[71]  J. Buxbaum,et al.  Altered A Formation and Long-Term Potentiation in a Calsenilin Knock-Out , 2003 .

[72]  D. Snyders,et al.  Differential modulation of Kv4 kinetics by KCHIP1 splice variants , 2003, Molecular and Cellular Neuroscience.

[73]  K. Rhodes,et al.  A Fundamental Role for KChIPs in Determining the Molecular Properties and Trafficking of Kv4.2 Potassium Channels* , 2003, Journal of Biological Chemistry.

[74]  Lin Chen,et al.  Transcriptional regulation by calcium, calcineurin, and NFAT. , 2003, Genes & development.

[75]  C. Lange,et al.  Regulatory modes of rod outer segment membrane guanylate cyclase differ in catalytic efficiency and Ca(2+)-sensitivity. , 2003, European journal of biochemistry.

[76]  Andreas Jeromin,et al.  Acute changes in short-term plasticity at synapses with elevated levels of neuronal calcium sensor-1 , 2003, Nature Neuroscience.

[77]  Mark T. Harnett,et al.  Functional properties of a brain-specific NH2-terminally spliced modulator of Kv4 channels. , 2003, American journal of physiology. Cell physiology.

[78]  K. Koch,et al.  Impact of N-terminal Myristoylation on the Ca2+-dependent Conformational Transition in Recoverin* , 2003, Journal of Biological Chemistry.

[79]  J. Chelly,et al.  IL1 receptor accessory protein like, a protein involved in X-linked mental retardation, interacts with Neuronal Calcium Sensor-1 and regulates exocytosis. , 2003, Human molecular genetics.

[80]  S. Wu,et al.  Guanylate cyclase-activating protein (GCAP) 1 rescues cone recovery kinetics in GCAP1/GCAP2 knockout mice , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[81]  K. Koch,et al.  Ca2+-Myristoyl Switch in the Neuronal Calcium Sensor Recoverin Requires Different Functions of Ca2+-binding Sites* , 2002, The Journal of Biological Chemistry.

[82]  P. Goldman-Rakic,et al.  Up-regulation of neuronal calcium sensor-1 (NCS-1) in the prefrontal cortex of schizophrenic and bipolar patients , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[83]  H. Strauss,et al.  Elucidating KChiP effects on Kv4.3 inactivation and recovery kinetics with a minimal KChiP2 isoform , 2002, The Journal of physiology.

[84]  E. Gundelfinger,et al.  The Calcium Sensor Protein Visinin-like Protein-1 Modulates the Surface Expression and Agonist Sensitivity of the α4β2 Nicotinic Acetylcholine Receptor* , 2002, The Journal of Biological Chemistry.

[85]  P. Goldman-Rakic,et al.  Interaction with Neuronal Calcium Sensor NCS-1 Mediates Desensitization of the D2 Dopamine Receptor , 2002, The Journal of Neuroscience.

[86]  Marie E. Burns,et al.  Dynamics of Cyclic GMP Synthesis in Retinal Rods , 2002, Neuron.

[87]  C. Spilker,et al.  Reversible Translocation and Activity-Dependent Localization of the Calcium–Myristoyl Switch Protein VILIP-1 to Different Membrane Compartments in Living Hippocampal Neurons , 2002, The Journal of Neuroscience.

[88]  J. Roder,et al.  Mechanisms Underlying the Neuronal Calcium Sensor-1-evoked Enhancement of Exocytosis in PC12 Cells* , 2002, The Journal of Biological Chemistry.

[89]  Gordon L Fain,et al.  Measurement of cytoplasmic calcium concentration in the rods of wild‐type and transducin knock‐out mice , 2002, The Journal of physiology.

[90]  K. Takimoto,et al.  Palmitoylation of KChIP Splicing Variants Is Required for Efficient Cell Surface Expression of Kv4.3 Channels* , 2002, The Journal of Biological Chemistry.

[91]  G. Tomaselli,et al.  Regulation of Kv4.3 Current by KChIP2 Splice Variants: A Component of Native Cardiac Ito? , 2002, Circulation.

[92]  J. Nerbonne,et al.  Modulation of Kv4-encoded K+ Currents in the Mammalian Myocardium by Neuronal Calcium Sensor-1* , 2002, The Journal of Biological Chemistry.

[93]  J. Ames,et al.  Structure and calcium-binding studies of a recoverin mutant (E85Q) in an allosteric intermediate state. , 2002, Biochemistry.

[94]  N. Vardi,et al.  Identification of a family of calcium sensors as protein ligands of inositol trisphosphate receptor Ca2+ release channels , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[95]  Yuji Imaizumi,et al.  Molecular Cloning and Characterization of CALP/KChIP4, a Novel EF-hand Protein Interacting with Presenilin 2 and Voltage-gated Potassium Channel Subunit Kv4* , 2002, The Journal of Biological Chemistry.

[96]  M. Ashby,et al.  Differential Use of Myristoyl Groups on Neuronal Calcium Sensor Proteins as a Determinant of Spatio-temporal Aspects of Ca2+ Signal Transduction* , 2002, The Journal of Biological Chemistry.

[97]  P. Detwiler,et al.  GCAP1 rescues rod photoreceptor response in GCAP1/GCAP2 knockout mice , 2002, The EMBO journal.

[98]  J. Buxbaum,et al.  Calsenilin Enhances Apoptosis by Altering Endoplasmic Reticulum Calcium Signaling , 2002, Molecular and Cellular Neuroscience.

[99]  J. Roder,et al.  Neuronal Calcium Sensor 1 and Activity-Dependent Facilitation of P/Q-Type Calcium Currents at Presynaptic Nerve Terminals , 2002, Science.

[100]  M. Landwehr,et al.  The Neuron-Specific Ca2+-Binding Protein Caldendrin: Gene Structure, Splice Isoforms, and Expression in the Rat Central Nervous System , 2002, Molecular and Cellular Neuroscience.

[101]  J. Lisman,et al.  The molecular basis of CaMKII function in synaptic and behavioural memory , 2002, Nature Reviews Neuroscience.

[102]  W. Catterall,et al.  Differential modulation of Cav2.1 channels by calmodulin and Ca2+-binding protein 1 , 2002, Nature Neuroscience.

[103]  K. Svoboda,et al.  The Life Cycle of Ca2+ Ions in Dendritic Spines , 2002, Neuron.

[104]  P. Distefano,et al.  Elimination of fast inactivation in Kv4 A-type potassium channels by an auxiliary subunit domain , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[105]  I. Whishaw,et al.  DREAM Is a Critical Transcriptional Repressor for Pain Modulation , 2002, Cell.

[106]  O. Lichtarge,et al.  Characterization of retinal guanylate cyclase‐activating protein 3 (GCAP3) from zebrafish to man , 2002, The European journal of neuroscience.

[107]  K. Koch,et al.  Ca 2-Myristoyl Switch in the Neuronal Calcium Sensor Recoverin Requires Different Functions of Ca 2-binding Sites * , 2002 .

[108]  T. Iwatsubo,et al.  Molecular cloning and characterization of CALP / KChIP 4 , a novel EF-hand protein interacting with presenilin 2 and voltage-gated potassium channel subunit Kv 4 , 2002 .

[109]  J. Ross,et al.  A Defect in the Kv Channel-Interacting Protein 2 (KChIP2) Gene Leads to a Complete Loss of I to and Confers Susceptibility to Ventricular Tachycardia , 2001, Cell.

[110]  J. Buxbaum,et al.  Calcium-regulated DNA Binding and Oligomerization of the Neuronal Calcium-sensing Protein, Calsenilin/DREAM/KChIP3* , 2001, The Journal of Biological Chemistry.

[111]  A. Jeromin,et al.  Interaction of Neuronal Calcium Sensor-1 (NCS-1) with Phosphatidylinositol 4-Kinase β Stimulates Lipid Kinase Activity and Affects Membrane Trafficking in COS-7 Cells* , 2001, The Journal of Biological Chemistry.

[112]  B. Rudy,et al.  A role for frequenin, a Ca2+-binding protein, as a regulator of Kv4 K+-currents , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[113]  Feng Yang,et al.  Ca2+ Binding Protein Frequenin Mediates GDNF-Induced Potentiation of Ca2+ Channels and Transmitter Release , 2001, Neuron.

[114]  D. Baylor,et al.  Role of guanylate cyclase-activating proteins (GCAPs) in setting the flash sensitivity of rod photoreceptors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[115]  O. Pongs,et al.  Immunocytochemical Localization and Crystal Structure of Human Frequenin (Neuronal Calcium Sensor 1)* , 2001, The Journal of Biological Chemistry.

[116]  Edouard De Castro,et al.  Ca2+ Signaling via the Neuronal Calcium Sensor-1 Regulates Associative Learning and Memory in C. elegans , 2001, Neuron.

[117]  D. Jo,et al.  Pro‐apoptotic function of calsenilin/DREAM/KChIP3 , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[118]  T. Südhof,et al.  Synaptotagmin I functions as a calcium regulator of release probability , 2001, Nature.

[119]  R. Burgoyne,et al.  The neuronal calcium sensor family of Ca2+-binding proteins. , 2000, The Biochemical journal.

[120]  R. Burgoyne,et al.  Neuronal Ca2+ Sensor-1/Frequenin Functions in an Autocrine Pathway Regulating Ca2+ Channels in Bovine Adrenal Chromaffin Cells* , 2000, The Journal of Biological Chemistry.

[121]  M. Berridge,et al.  The versatility and universality of calcium signalling , 2000, Nature Reviews Molecular Cell Biology.

[122]  J. Thorner,et al.  Structure and calcium-binding properties of Frq1, a novel calcium sensor in the yeast Saccharomyces cerevisiae. , 2000, Biochemistry.

[123]  W. Wisden,et al.  Expression of the neuronal calcium sensor protein family in the rat brain , 2000, Neuroscience.

[124]  J. Buxbaum,et al.  Calsenilin reverses presenilin-mediated enhancement of calcium signaling. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[125]  J. Kukkonen,et al.  NAIP interacts with hippocalcin and protects neurons against calcium‐induced cell death through caspase‐3‐dependent and ‐independent pathways , 2000, The EMBO journal.

[126]  K. Palczewski,et al.  Ca2+‐binding proteins in the retina: Structure, function, and the etiology of human visual diseases , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[127]  K. Rhodes,et al.  Modulation of A-type potassium channels by a family of calcium sensors , 2000, Nature.

[128]  C. Verlinde,et al.  Five Members of a Novel Ca2+-binding Protein (CABP) Subfamily with Similarity to Calmodulin* , 2000, The Journal of Biological Chemistry.

[129]  J. Thorner,et al.  Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol-4-OH kinase , 1999, Nature Cell Biology.

[130]  A. Dizhoor,et al.  Three-dimensional Structure of Guanylyl Cyclase Activating Protein-2, a Calcium-sensitive Modulator of Photoreceptor Guanylyl Cyclases* , 1999, The Journal of Biological Chemistry.

[131]  A. Persechini,et al.  The Relationship between the Free Concentrations of Ca2+ and Ca2+-calmodulin in Intact Cells* , 1999, The Journal of Biological Chemistry.

[132]  Britt Mellström,et al.  DREAM is a Ca2+-regulated transcriptional repressor , 1999, Nature.

[133]  R. Zucker,et al.  Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. , 1999, Journal of neurophysiology.

[134]  S. Vijay-Kumar,et al.  Crystal structure of recombinant bovine neurocalcin , 1999, Nature Structural Biology.

[135]  J. Buxbaum,et al.  Calsenilin: A calcium-binding protein that interacts with the presenilins and regulates the levels of a presenilin fragment , 1998, Nature Medicine.

[136]  B. McFerran,et al.  Neuronal Ca2+ Sensor 1, the Mammalian Homologue of Frequenin, Is Expressed in Chromaffin and PC12 Cells and Regulates Neurosecretion from Dense-core Granules* , 1998, The Journal of Biological Chemistry.

[137]  C. Garner,et al.  Caldendrin, a Novel Neuronal Calcium-binding Protein Confined to the Somato-dendritic Compartment* , 1998, The Journal of Biological Chemistry.

[138]  M. Berridge Neuronal Calcium Signaling , 1998, Neuron.

[139]  A. Bird,et al.  A mutation in guanylate cyclase activator 1A (GUCA1A) in an autosomal dominant cone dystrophy pedigree mapping to a new locus on chromosome 6p21.1. , 1998, Human molecular genetics.

[140]  E Schaefer,et al.  The MAP kinase kinase kinase MLK2 co‐localizes with activated JNK along microtubules and associates with kinesin superfamily motor KIF3 , 1998, The EMBO journal.

[141]  L. Stryer,et al.  Molecular mechanics of calcium–myristoyl switches , 1997, Nature.

[142]  Karl Deisseroth,et al.  Ca2+-dependent regulation in neuronal gene expression , 1997, Current Opinion in Neurobiology.

[143]  A. Dizhoor,et al.  Calcium Binding, but Not a Calcium-Myristoyl Switch, Controls the Ability of Guanylyl Cyclase-activating Protein GCAP-2 to Regulate Photoreceptor Guanylyl Cyclase* , 1997, The Journal of Biological Chemistry.

[144]  W. Regehr,et al.  Timing of neurotransmission at fast synapses in the mammalian brain , 1996, Nature.

[145]  Mark Ellisman,et al.  Direct modulation of calmodulin targets by the neuronal calcium sensor NCS-1. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[146]  A. Dizhoor,et al.  Inactivation of EF-hands Makes GCAP-2 (p24) a Constitutive Activator of Photoreceptor Guanylyl Cyclase by Preventing a Ca2+-induced “Activator-to-Inhibitor” Transition* , 1996, The Journal of Biological Chemistry.

[147]  A. Dizhoor,et al.  The Membrane Guanylyl Cyclase, Retinal Guanylyl Cyclase-1, Is Activated through Its Intracellular Domain (*) , 1996, The Journal of Biological Chemistry.

[148]  J. Johnson,et al.  Effects of Myosin Light Chain Kinase and Peptides on Ca2+ Exchange with the N- and C-terminal Ca2+ Binding Sites of Calmodulin (*) , 1996, The Journal of Biological Chemistry.

[149]  L. Stryer,et al.  Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state , 1995, Nature.

[150]  J B Hurley,et al.  Ca-dependent Interaction of Recoverin with Rhodopsin Kinase (*) , 1995, The Journal of Biological Chemistry.

[151]  S. Nef,et al.  Identification of neuronal calcium sensor (NCS-1) possibly involved in the regulation of receptor phosphorylation. , 1995, Journal of receptor and signal transduction research.

[152]  J. Cox,et al.  Cation binding and conformational changes in VILIP and NCS-1, two neuron-specific calcium-binding proteins. , 1994, The Journal of biological chemistry.

[153]  J. Falke,et al.  Molecular Tuning of Ion Binding to Calcium Signaling Proteins , 1994, Quarterly Reviews of Biophysics.

[154]  O. Pongs,et al.  Frequenin—A novel calcium-binding protein that modulates synaptic efficacy in the drosophila nervous system , 1993, Neuron.

[155]  K. Takamatsu,et al.  Molecular cloning of hippocalcin, a novel calcium-binding protein of the recoverin family exclusively expressed in hippocampus. , 1992, Biochemical and biophysical research communications.

[156]  J B Hurley,et al.  Recoverin: a calcium sensitive activator of retinal rod guanylate cyclase , 1991, Science.