Imaging Cortical Dynamics at High Spatial and Temporal Resolution with Novel Blue Voltage-Sensitive Dyes

[1]  R. Keynes,et al.  Opacity changes in stimulated nerve , 1949, The Journal of physiology.

[2]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[3]  R. Keynes,et al.  Light Scattering and Birefringence Changes during Nerve Activity , 1968, Nature.

[4]  A Watanabe,et al.  Changes in fluorescence, turbidity, and birefringence associated with nerve excitation. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[5]  B. Salzberg,et al.  Optical Recording of Impulses in Individual Neurones of an Invertebrate Central Nervous System , 1973, Nature.

[6]  L. Cohen Changes in neuron structure during action potential propagation and synaptic transmission. , 1973, Physiological reviews.

[7]  A. Grinvald,et al.  Simultaneous recording from several neurones in an invertebrate central nervous system , 1977, Nature.

[8]  W. N. Ross,et al.  Optical recording of neuronal activity in an invertebrate central nervous system: simultaneous monitoring of several neurons. , 1977, Journal of neurophysiology.

[9]  L. Loew,et al.  Charge shift optical probes of membrane potential. Theory. , 1978, Biochemistry.

[10]  A Grinvald,et al.  Optical recording of calcium action potentials from growth cones of cultured neurons with a laser microbeam. , 1981, Science.

[11]  A Grinvald,et al.  Simultaneous optical monitoring of activity of many neurons in invertebrate ganglia using a 124-element photodiode array. , 1981, Journal of neurophysiology.

[12]  A Grinvald,et al.  Improved fluorescent probes for the measurement of rapid changes in membrane potential. , 1982, Biophysical journal.

[13]  A Grinvald,et al.  Visualization of the spread of electrical activity in rat hippocampal slices by voltage‐sensitive optical probes , 1982, The Journal of physiology.

[14]  A. Grinvald,et al.  Fluorescence monitoring of electrical responses from small neurons and their processes. , 1983, Biophysical journal.

[15]  A. Grinvald,et al.  Real-time optical imaging of naturally evoked electrical activity in intact frog brain , 1984, Nature.

[16]  A. Grinvald,et al.  Optical mapping of electrical activity in rat somatosensory and visual cortex , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  L M Loew,et al.  Spectra, membrane binding, and potentiometric responses of new charge shift probes. , 1985, Biochemistry.

[18]  G. Blasdel,et al.  Voltage-sensitive dyes reveal a modular organization in monkey striate cortex , 1986, Nature.

[19]  T. Wiesel,et al.  Functional architecture of cortex revealed by optical imaging of intrinsic signals , 1986, Nature.

[20]  D. Senseman,et al.  Odor-elicited activity monitored simultaneously from 124 regions of the salamander olfactory bulb using a voltage-sensitive dye , 1987, Brain Research.

[21]  J. Kauer Real-time imaging of evoked activity in local circuits of the salamander olfactory bulb , 1988, Nature.

[22]  R. Frostig,et al.  Optical imaging of neuronal activity. , 1988, Physiological reviews.

[23]  D. Ts'o,et al.  Functional organization of primate visual cortex revealed by high resolution optical imaging. , 1990, Science.

[24]  D. Ts'o,et al.  Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[25]  A. Grinvald,et al.  A tandem-lens epifluorescence macroscope: Hundred-fold brightness advantage for wide-field imaging , 1991, Journal of Neuroscience Methods.

[26]  A. Grinvald,et al.  The layout of iso-orientation domains in area 18 of cat visual cortex: optical imaging reveals a pinwheel-like organization , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  R. Frostig,et al.  Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  C C Wood,et al.  Mapping function in the human brain with magnetoencephalography, anatomical magnetic resonance imaging, and functional magnetic resonance imaging. , 1995, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[29]  A Grinvald,et al.  Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex. , 1995, Journal of neurophysiology.

[30]  M. Witter,et al.  Entorhinal-Hippocampal Interactions Revealed by Real-Time Imaging , 1996, Science.

[31]  A. Grinvald,et al.  Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses , 1996, Science.

[32]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[33]  R Y Tsien,et al.  Improved indicators of cell membrane potential that use fluorescence resonance energy transfer. , 1997, Chemistry & biology.

[34]  Ehud Y Isacoff,et al.  A Genetically Encoded Optical Probe of Membrane Voltage , 1997, Neuron.

[35]  M. Nicolelis,et al.  Reconstructing the Engram: Simultaneous, Multisite, Many Single Neuron Recordings , 1997, Neuron.

[36]  R. Tsien,et al.  based on green fluorescent proteins and calmodulin , 1997 .

[37]  Håkan Johansson,et al.  Modern Techniques in Neuroscience Research , 1999, Springer Berlin Heidelberg.

[38]  Timothy W. Cacciatore,et al.  Identification of Neural Circuits by Imaging Coherent Electrical Activity with FRET-Based Dyes , 1999, Neuron.

[39]  A Grinvald,et al.  In-vivo Optical Imaging of Cortical Architecture and Dynamics , 1999 .

[40]  Carole Pegg Recordings , 1949, Tempo.