Nonlinear Approximation with Dictionaries. II. Inverse Estimates
暂无分享,去创建一个
[1] E. M. Hartwell. Boston , 1906 .
[2] S. B. Stechkin. On absolute convergence of orthogonal series. I. , 1953 .
[3] H. Triebel. Theory Of Function Spaces , 1983 .
[4] C. Bennett,et al. Interpolation of operators , 1987 .
[5] P. Petrushev. Direct and converse theorems for spline and rational approximation and besov spaces , 1988 .
[6] B. Golubov,et al. Walsh Series and Transforms , 1991 .
[7] A. Efimov,et al. Walsh Series and Transforms: Theory and Applications , 1991 .
[8] Mladen Victor Wickerhauser. Smooth localized orthonormal bases , 1993 .
[9] G. Weiss,et al. Local sine and cosine bases of Coifman and Meyer and the construction of smooth wavelets , 1993 .
[10] George G. Lorentz,et al. Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.
[11] Ronald A. DeVore,et al. Some remarks on greedy algorithms , 1996, Adv. Comput. Math..
[12] Martin Greiner,et al. Wavelets , 2018, Complex..
[13] A. Calderbank,et al. Z4‐Kerdock Codes, Orthogonal Spreads, and Extremal Euclidean Line‐Sets , 1997 .
[14] P. Wojtaszczyk. On unconditional polynomial bases in L p and bergman spaces , 1997 .
[15] V. Temlyakov,et al. Greedy Algorithms with Regard to Multivariate Systems with Special Structure , 1997 .
[16] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[17] K. Gröchenig,et al. Nonlinear Approximation with Local Fourier Bases , 2000 .
[18] P. Tseng,et al. Block Coordinate Relaxation Methods for Nonparametric Wavelet Denoising , 2000 .
[19] Karlheinz Gröchenig,et al. Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.
[20] A. Aldroubi,et al. p-Frames and Shift Invariant Subspaces of Lp , 2001 .
[21] Xiaoming Huo,et al. Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.
[22] R. Gribonval,et al. Some remarks on non-linear approximation with Schauder bases , 2001 .
[23] O. Christensen. An introduction to frames and Riesz bases , 2002 .
[24] Michael Elad,et al. Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[25] Stephen J. Dilworth,et al. The Thresholding Greedy Algorithm, Greedy Bases, and Duality , 2003 .
[26] I. Daubechies,et al. Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .
[27] Gerard Kerkyacharian,et al. Entropy, Universal Coding, Approximation, and Bases Properties , 2003 .
[28] Thomas Strohmer,et al. GRASSMANNIAN FRAMES WITH APPLICATIONS TO CODING AND COMMUNICATION , 2003, math/0301135.
[29] Rémi Gribonval,et al. Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.
[30] Karlheinz Gröchenig,et al. Localized Frames Are Finite Unions of Riesz Sequences , 2003, Adv. Comput. Math..
[31] Karlheinz Gr öchenig. Localization of Frames , 2004 .
[32] K. Gröchenig. Localization of Frames, Banach Frames, and the Invertibility of the Frame Operator , 2004 .
[33] R. Gribonval,et al. On Approximation with Spline Generated Framelets , 2004 .
[34] R. Gribonval,et al. On a Problem of Gröchenig About Nonlinear Approximation with Localized Frames , 2004 .
[35] R. Gribonval,et al. Nonlinear Approximation with Dictionaries I. Direct Estimates , 2004 .