An Adaptive Proximal Bundle Method with Inexact Oracles for a Class of Nonconvex and Nonsmooth Composite Optimization

In this paper, an adaptive proximal bundle method is proposed for a class of nonconvex and nonsmooth composite problems with inexact information. The composite problems are the sum of a finite convex function with inexact information and a nonconvex function. For the nonconvex function, we design the convexification technique and ensure the linearization errors of its augment function to be nonnegative. Then, the sum of the convex function and the augment function is regarded as an approximate function to the primal problem. For the approximate function, we adopt a disaggregate strategy and regard the sum of cutting plane models of the convex function and the augment function as a cutting plane model for the approximate function. Then, we give the adaptive nonconvex proximal bundle method. Meanwhile, for the convex function with inexact information, we utilize the noise management strategy and update the proximal parameter to reduce the influence of inexact information. The method can obtain an approximate solution. Two polynomial functions and six DC problems are referred to in the numerical experiment. The preliminary numerical results show that our algorithm is effective and reliable.

[1]  Antonio Fuduli,et al.  A DC piecewise affine model and a bundling technique in nonconvex nonsmooth minimization , 2004, Optim. Methods Softw..

[2]  Krzysztof C. Kiwiel A Method of Centers with Approximate Subgradient Linearizations for Nonsmooth Convex Optimization , 2008, SIAM J. Optim..

[3]  Krzysztof C. Kiwiel,et al.  A Linearization Algorithm for Nonsmooth Minimization , 1985, Math. Oper. Res..

[4]  Adil M. Bagirov,et al.  Codifferential method for minimizing nonsmooth DC functions , 2011, J. Glob. Optim..

[5]  D. Noll Bundle Method for Non-Convex Minimization with Inexact Subgradients and Function Values , 2013 .

[6]  Leena Suhl,et al.  Risk-Averse Optimization in Two-Stage Stochastic Models: Computational Aspects and a Study , 2015, SIAM J. Optim..

[7]  Guoyin Li,et al.  A modified Polak-Ribière-Polyak conjugate gradient algorithm for nonsmooth convex programs , 2014, J. Comput. Appl. Math..

[8]  Shiqian Ma,et al.  Fast alternating linearization methods for minimizing the sum of two convex functions , 2009, Math. Program..

[9]  Guoyin Li,et al.  Global Convergence of Splitting Methods for Nonconvex Composite Optimization , 2014, SIAM J. Optim..

[10]  Warren Hare,et al.  Computing proximal points of nonconvex functions , 2008, Math. Program..

[11]  M. Solodov On Approximations with Finite Precision in Bundle Methods for Nonsmooth Optimization , 2003 .

[12]  Adil M. Bagirov,et al.  A Method for Minimization of Quasidifferentiable Functions , 2002, Optim. Methods Softw..

[13]  Claudia A. Sagastizábal,et al.  Incremental-like bundle methods with application to energy planning , 2010, Comput. Optim. Appl..

[14]  Li-Ping Pang,et al.  A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information , 2018, J. Glob. Optim..

[15]  Shuang Chen,et al.  A proximal alternating linearization method for nonconvex optimization problems , 2014, Optim. Methods Softw..

[16]  Claudia A. Sagastizábal,et al.  Composite proximal bundle method , 2013, Math. Program..

[17]  Yang Yang,et al.  Constrained Nonconvex Nonsmooth Optimization via Proximal Bundle Method , 2014, J. Optim. Theory Appl..

[18]  Claude Lemaréchal,et al.  Convex proximal bundle methods in depth: a unified analysis for inexact oracles , 2014, Math. Program..

[19]  A. Borghetti,et al.  Lagrangian Heuristics Based on Disaggregated Bundle Methods for Hydrothermal Unit Commitment , 2002, IEEE Power Engineering Review.

[20]  Krzysztof C. Kiwiel,et al.  A Proximal Bundle Method with Approximate Subgradient Linearizations , 2006, SIAM J. Optim..

[21]  Krzysztof C. Kiwiel,et al.  Restricted Step and Levenberg-Marquardt Techniques in Proximal Bundle Methods for Nonconvex Nondifferentiable Optimization , 1996, SIAM J. Optim..

[22]  Laurent Condat,et al.  A Primal–Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms , 2012, Journal of Optimization Theory and Applications.

[23]  Michael Ulbrich,et al.  An Inexact Bundle Algorithm for Nonconvex Nonsmooth Minimization in Hilbert Space , 2019, SIAM J. Control. Optim..

[24]  Marc Teboulle,et al.  Proximal alternating linearized minimization for nonconvex and nonsmooth problems , 2013, Mathematical Programming.

[25]  Jan Vlcek,et al.  A bundle-Newton method for nonsmooth unconstrained minimization , 1998, Math. Program..

[26]  Adil M. Bagirov,et al.  A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes , 2017, J. Glob. Optim..

[27]  Yong Li,et al.  A Modified Hestenes and Stiefel Conjugate Gradient Algorithm for Large-Scale Nonsmooth Minimizations and Nonlinear Equations , 2015, Journal of Optimization Theory and Applications.

[28]  M. Solodov,et al.  Error Stability Properties of Generalized Gradient-Type Algorithms , 1998 .

[29]  Zhi-Quan Luo,et al.  On the linear convergence of the alternating direction method of multipliers , 2012, Mathematical Programming.

[30]  Chun-Ming Tang,et al.  Strongly sub-feasible direction method for constrained optimization problems with nonsmooth objective functions , 2012, Eur. J. Oper. Res..

[31]  Warren Hare,et al.  A Redistributed Proximal Bundle Method for Nonconvex Optimization , 2010, SIAM J. Optim..

[32]  Michael Hintermüller,et al.  A Proximal Bundle Method Based on Approximate Subgradients , 2001, Comput. Optim. Appl..

[33]  Antonio Fuduli,et al.  Minimizing Nonconvex Nonsmooth Functions via Cutting Planes and Proximity Control , 2003, SIAM J. Optim..

[34]  Marko Mäkelä,et al.  Survey of Bundle Methods for Nonsmooth Optimization , 2002, Optim. Methods Softw..

[35]  Warren Hare,et al.  A proximal bundle method for nonsmooth nonconvex functions with inexact information , 2015, Computational Optimization and Applications.

[36]  Chun-Ming Tang,et al.  A feasible SQP-GS algorithm for nonconvex, nonsmooth constrained optimization , 2012, Numerical Algorithms.

[37]  Adrian S. Lewis,et al.  A Robust Gradient Sampling Algorithm for Nonsmooth, Nonconvex Optimization , 2005, SIAM J. Optim..