Reinvestigation of electrogyration in triglycine sulfate

Abstract The gyrotropy of triglycine sulfate at a wavelength of 633 nm was investigated theoretically and experimentally in the vicinity of the ferroelectric phase transition at 323 K. The electrogyrative signal, which consists of true electrogyration, linear electro-optic effect, and quadratic electro-optic effect, exhibits a contribution due to an optical anomaly caused by fluctuations of the order parameter. Building on the results of previous works by others in this field, the range of ±5K of the phase transition was examined. The quadratic electro-optic rotation of the indicatrix changes sign 1.2 K above the transition temperature. The temperature dependence of the linear electro-optic component was found to be affected by a strong magnetic field of about 1 Tesla along the twofold axis.

[1]  W. Kaminsky,et al.  Anisotropy of optical activity and Faraday effect in TeO2 , 1993 .

[2]  W. Kaminsky,et al.  Anisotropy of the Faraday effect in non-cubic crystals , 1993 .

[3]  J. Etxebarria,et al.  Simultaneous determination of the birefringence, optical activity and rotation of the indicatrix of triglicine sulphate , 1992 .

[4]  W. Kaminsky,et al.  Magneto-electrogyration in cubic Sr(NO3)2, Ba(NO3)2, and Pb(NO3)2 , 1992 .

[5]  H. Weber,et al.  Sensitive and selective polarimeter for application in crystal optics , 1991 .

[6]  Kei Saito,et al.  Optical study on domain switching of ferroelectric triglycine sulfuric acid and Rochelle salt , 1991 .

[7]  E. Salje,et al.  Phase transitions in ferroelastic and co-elastic crystals , 1993 .

[8]  J. Moxon,et al.  The simultaneous measurement of optical activity and circular dichroism in birefringent linearly dichroic crystal sections. I. Introduction and description of the method , 1990 .

[9]  W. Kaminsky,et al.  Faraday effect aid birefringence in orthorhombic Li2Ge7O15 near the ferroelectric phase transition , 1990 .

[10]  A. Glazer,et al.  On the origin of optical activity in crystal structures , 1986 .

[11]  Y. Uesu,et al.  A new optical method and apparatus `HAUP' for measuring simultaneously optical activity and birefringence of crystals. I. Principles and construction , 1983 .

[12]  Y. Uesu,et al.  A new optical method and apparatus `HAUP' for measuring simultaneously optical activity and birefringence of crystals. II. Application to triglycine–sulphuric acid (NH2CH2CO2H)3.H2SO4 , 1983 .

[13]  B. Strukov,et al.  Critical phenomena in perfect and inperfect TGS crystals , 1980 .

[14]  J. Albers,et al.  Elastic and thermoelastic constants of triglycine sulphate (TGS) in the paraelectric phase , 1977 .

[15]  S. Haussühl,et al.  Point symmetry, electrogyration, and quadratic electrooptic effects of cubic Sr(NO3)2, Ba(NO3)2, and Pb(NO3)2 , 1977 .

[16]  Arthur C. Miller Magnitude of Electrogyratory Effects , 1973 .

[17]  I. Zheludev,et al.  Physics of crystalline dielectrics , 1971 .

[18]  P. V. Lenzo,et al.  Optical activity and electrooptic effect in bismuth germanium oxide (Bi(12)GeO(20)). , 1966, Applied optics.

[19]  S. Iwao Spin and unitary spin independence in SU(8) symmetry , 1965 .

[20]  S. Hoshino,et al.  CRYSTAL STRUCTURE OF THE FERROELECTRIC PHASE OF (GLYCINE)$sub 3$/CENTER DOT/ H$sub 2$SO$sub 4$ , 1959 .

[21]  E. A. Wood,et al.  Monoclinic glycine sulfate: crystallographic data , 1957 .

[22]  J. P. Remeika,et al.  Ferroelectricity of Glycine Sulfate , 1956 .

[23]  C. Kittel Introduction to solid state physics , 1954 .

[24]  G. Szivessy,et al.  Über die Prüfung der Gitteroptik bei aktiven Kristallen , 1934 .

[25]  O. Wiener Gemeinsame Wirkung von Circularpolarisation und Doppelbrechung, geometrisch dargestellt , 1888 .

[26]  W. Wedding Die magnetische Drehung der Polarisationsebene bei wachsender Doppelbrechung in dilatiertem Glas , 1888 .

[27]  Michael Faraday,et al.  Experimental Researches in Electricity , 1880, Nature.