Extremal values of semi-regular continuants and codings of interval exchange transformations

Given a set A consisting of positive integers a1 < a2 < · · · < ak and a k-term partition P : n1 + n2 + · · · + nk = n, find the extremal denominators of the regular and semi-regular continued fraction [0; x1, x2, . . . , xn] with partial quotients xi ∈ A and where each ai occurs precisely ni times in the sequence x1, x2, . . . , xn. In 1983, G. Ramharter gave an explicit description of the extremal arrangements of the regular continued fraction and the minimizing arrangement for the semi-regular continued fraction and showed that in each case the arrangement is unique up to reversal and independent of the actual values of the positive integers ai. However, the determination of the maximizing arrangement for the semi-regular continuant turned out to be more difficult. He showed that if |A| = 2, then the maximizing arrangement is unique (up to reversal) and depends only on the partition P and not on the values of the ai. He further conjectured that this should be true for general A with |A| ≥ 2. In this paper, we confirm Ramharter’s conjecture for sets A with |A| = 3 and give an algorithmic procedure for constructing the maximizing arrangement. We also show that Ramharter’s conjecture fails in general for sets with |A| ≥ 4 in that the maximizing arrangement is neither unique nor independent of the values of the digits in A. The central idea, as discovered by Ramharter, is that the extremal arrangements satisfy a strong combinatorial condition. In the context of bi-infinite binary words, this condition coincides with the Markoff property, discovered by A.A. Markoff in 1879 in his study of minima of binary quadratic forms. We show that this same combinatorial condition, in the framework of infinite words over a k-letter alphabet, is the fundamental characterizing property which describes the orbit structure of codings of points under a symmetric k-interval exchange transformation.

[1]  C. Reutenauer,et al.  Combinatorics on Words: Christoffel Words and Repetitions in Words , 2008 .

[2]  M. Boshernitzan,et al.  A unique ergodicity of minimal symbolic flows with linear block growth , 1984 .

[3]  T. Cusick,et al.  The Markoff and Lagrange Spectra , 1989 .

[4]  Indag. Mathem Fine and Wilf Words for Any Periods , 2022 .

[5]  Pierre Arnoux,et al.  The Rauzy Gasket , 2013 .

[6]  S. Kerckhoff Simplicial systems for interval exchange maps and measured foliations , 1985, Ergodic Theory and Dynamical Systems.

[7]  G. Ramharter,et al.  Maximal continuants and the Fine-Wilf theorem , 2005, J. Comb. Theory, Ser. A.

[8]  Aldo de Luca,et al.  On Christoffel and standard words and their derivatives , 2016, Theor. Comput. Sci..

[9]  T. Cusick The connection between the Lagrange and Markoff spectra , 1975 .

[10]  A. Katok,et al.  APPROXIMATIONS IN ERGODIC THEORY , 1967 .

[11]  Pierre Stambul,et al.  Continued fractions with bounded partial quotients , 1999 .

[12]  G. Ramharter Extremal values of continuants , 1983 .

[13]  J. Allouche Algebraic Combinatorics on Words , 2005 .

[14]  T. Motzkin,et al.  Some combinatorial extremum problems , 1956 .

[15]  I. Good The fractional dimensional theory of continued fractions , 1941, Mathematical Proceedings of the Cambridge Philosophical Society.

[16]  Julien Cassaigne,et al.  Complexité et facteurs spéciaux , 1997 .

[17]  Christoph Baxa,et al.  Extremal values of continuants and transcendence of certain continued fractions , 2004, Adv. Appl. Math..

[18]  V. Delecroix,et al.  Interval Exchange Transformations , 2022, Dimension Groups and Dynamical Systems.

[19]  C. Reutenauer On Markoff's property and Sturmian words , 2006 .

[20]  A. Markoff,et al.  Sur les formes quadratiques binaires indéfinies , 1880 .

[21]  F. Paulin,et al.  Pseudogroups of isometries of R and Rips’ theorem on free actions on R-trees , 2001 .

[22]  Gérard Rauzy,et al.  Représentation géométrique de suites de complexité $2n+1$ , 1991 .

[23]  A. Markoff Sur une question de Jean Bernoulli , 1881 .

[24]  Sébastien Ferenczi,et al.  Languages of k-interval exchange transformations , 2008 .

[25]  V. Arnold SMALL DENOMINATORS AND PROBLEMS OF STABILITY OF MOTION IN CLASSICAL AND CELESTIAL MECHANICS , 1963 .

[26]  H. Wilf,et al.  Uniqueness theorems for periodic functions , 1965 .

[27]  G. Ramharter Über asymmetrische diophantische approximationen , 1982 .

[28]  Gabriele Fici,et al.  On the structure of bispecial Sturmian words , 2013, J. Comput. Syst. Sci..

[29]  S. K. Zaremba,et al.  La Méthode des “Bons Treillis” pour le Calcul des Intégrales Multiples , 1972 .

[30]  Zhi-Xiong Wen,et al.  Some Properties of the Singular Words of the Fibonacci Word , 1994, Eur. J. Comb..