A G2-Subdivision Algorithm

In this paper we present a method to optimize the smoothness order of subdivision algorithms generating surfaces of arbitrary topology. In particular we construct a subdivision algorithm with some negative weights producing G 2-surfaces. These surfaces are piecewise bicubic and are flat at their extraordinary points. The underlying ideas can also be used to improve the smoothness order of subdivision algorithms for surfaces of higher degree or triangular nets.

[1]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[2]  U. Reif A degree estimate for subdivision surfaces of higher regularity , 1996 .

[3]  J. Peters,et al.  Analysis of Algorithms Generalizing B-Spline Subdivision , 1998 .

[4]  Richard F. Riesenfeld,et al.  A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Charles A. Micchelli,et al.  Computing surfaces invariant under subdivision , 1987, Comput. Aided Geom. Des..

[6]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[7]  Hartmut Prautzsch,et al.  Improved triangular subdivision schemes , 1998, Proceedings. Computer Graphics International (Cat. No.98EX149).

[8]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[9]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[10]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[11]  Ruibin Qu,et al.  Recursive subdivision algorithms for curve and surface design (subdivision algorithms) , 1990 .

[12]  George Merrill Chaikin,et al.  An algorithm for high-speed curve generation , 1974, Comput. Graph. Image Process..

[13]  A. A. Ball,et al.  Conditions for tangent plane continuity over recursively generated B-spline surfaces , 1988, TOGS.

[14]  Ulrich Reif,et al.  A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..