Computation of the eigenvalues of the Schrödinger equation by symplectic and trigonometrically fitted symplectic partitioned Runge Kutta methods
暂无分享,去创建一个
[1] F. Lasagni. Canonical Runge-Kutta methods , 1988 .
[2] T. E. Simos. P-stable Four-Step Exponentially-Fitted Method for the Numerical Integration of the Schr¨odinger Equation , 2005 .
[3] R. McLachlan,et al. The accuracy of symplectic integrators , 1992 .
[4] A. Hinchliffe,et al. Chemical Modelling: Applications and Theory , 2008 .
[5] Robert I. McLachlan,et al. On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods , 1995, SIAM J. Sci. Comput..
[6] R. Ruth. A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.
[7] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[8] H. Yoshida. Construction of higher order symplectic integrators , 1990 .
[9] J. M. Sanz-Serna,et al. Runge-kutta schemes for Hamiltonian systems , 1988 .
[10] R. Ruth,et al. Fourth-order symplectic integration , 1990 .
[11] G. Psihoyios. A Block Implicit Advanced Step-point (BIAS) Algorithm for Stiff Differential Systems , 2006 .
[12] Xiao-yan Liu,et al. Numerical solution of one‐dimensional time‐independent Schrödinger equation by using symplectic schemes , 2000 .