A comparison of mechanistic models for the combustion of iron microparticles and their application to polydisperse iron-air suspensions

[1]  Philip de Goey,et al.  On the surface chemisorption of oxidizing fine iron particles: Insights gained from molecular dynamics simulations , 2022, Combustion and Flame.

[2]  J. V. Oijen,et al.  Flame structure and burning velocity of flames propagating in binary iron aerosols , 2022, Proceedings of the Combustion Institute.

[3]  S. Goroshin,et al.  Some fundamental aspects of laminar flames in nonvolatile solid fuel suspensions , 2022, Progress in Energy and Combustion Science.

[4]  J. Kuerten,et al.  Improvement of heat- and mass transfer modeling for single iron particles combustion using resolved simulations , 2022, Combustion Science and Technology.

[5]  J. Janicka,et al.  Iron as a sustainable chemical carrier of renewable energy: Analysis of opportunities and challenges for retrofitting coal-fired power plants , 2022, Renewable and Sustainable Energy Reviews.

[6]  Y. Shoshin,et al.  Temperature and phase transitions of laser-ignited single iron particle , 2022, Combustion and Flame.

[7]  X. Mi,et al.  A quantitative analysis of the ignition characteristics of fine iron particles , 2021, Combustion and Flame.

[8]  Y. Shoshin,et al.  Burn time and combustion regime of laser-ignited single iron particle , 2021 .

[9]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[10]  J. V. van Oijen,et al.  Structures and burning velocities of flames in iron aerosols , 2020 .

[11]  S. Goroshin,et al.  A new kind of flame: Observation of the discrete flame propagation regime in iron particle suspensions in microgravity , 2019, Combustion and Flame.

[12]  A. Higgins,et al.  Dimensional scaling of flame propagation in discrete particulate clouds , 2019, Combustion Theory and Modelling.

[13]  J. Bergthorson Recyclable metal fuels for clean and compact zero-carbon power , 2018, Progress in Energy and Combustion Science.

[14]  A. Sadiki,et al.  Numerical analyses of laminar flames propagating in droplet mists using detailed and tabulated chemistry , 2018 .

[15]  S. Goroshin,et al.  Propagation and quenching of dual-front flames in binary-fuel mixtures , 2018 .

[16]  J. Bergthorson,et al.  Enabling the metal fuel economy: green recycling of metal fuels , 2017 .

[17]  M. Vascellari,et al.  Flame structure analysis and flamelet progress variable modelling of strained coal flames , 2017 .

[18]  S. Goroshin,et al.  Metal-water combustion for clean propulsion and power generation , 2017 .

[19]  S. Goroshin,et al.  The Discrete Regime of Flame Propagation in Metal Particulate Clouds , 2016 .

[20]  S. Goroshin,et al.  Thermal Structure and Burning Velocity of Flames in Non-volatile Fuel Suspensions , 2016, 1609.00347.

[21]  Harry K. Moffat,et al.  Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. Version 2.2.1 , 2016 .

[22]  David L. Frost,et al.  Direct combustion of recyclable metal fuels for zero-carbon heat and power , 2015 .

[23]  S. Goroshin,et al.  Reaction of a Particle Suspension in a Rapidly‐Heated Oxidizing Gas , 2015 .

[24]  S. Goroshin,et al.  Propagation limits and velocity of reaction-diffusion fronts in a system of discrete random sources. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  P. Nikrityuk,et al.  Drag forces and heat transfer coefficients for spherical, cuboidal and ellipsoidal particles in cross flow at sub-critical Reynolds numbers , 2012 .

[26]  S. Goroshin,et al.  Reaction-diffusion fronts in media with spatially discrete sources. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  S. Goroshin,et al.  Laminar dust flames in a reduced-gravity environment , 2011 .

[28]  S. Fujimoto,et al.  Physical Properties of Iron-Oxide Scales on Si-Containing Steels at High Temperature , 2009 .

[29]  S. Goroshin,et al.  Effect of discreteness on heterogeneous flames: Propagation limits in regular and random particle arrays , 2009 .

[30]  S. Goroshin,et al.  Quenching distance of laminar flame in aluminum dust clouds , 1996 .

[31]  A. Atkinson Transport processes during the growth of oxide films at elevated temperature , 1985 .

[32]  Y. S. Touloukian Recommended Values of the Thermophysical Properties of Eight Alloys, Major Constituents and Their Oxides , 1966 .

[33]  J. Paiedassi Sur l'oxydation du protoxyde de fer dans l'air dans l'intervalle 600–1350°c☆ , 1958 .

[34]  M. Aldén,et al.  Ignition and combustion behavior of single micron-sized iron particle in hot gas flow , 2022, Combustion and Flame.

[35]  E. Dreizin,et al.  At what ambient temperature can thermal runaway of a burning metal particle occur? , 2022, Combustion and Flame.

[36]  M. Liberman Combustion Physics , 2021 .

[37]  Xiaoxi Li Transforming Our World: The 2030 Agenda for Sustainable Development: An Appeal of Global Cooperation for Building Green Civilization , 2020, Green Civilization.

[38]  S. Goroshin,et al.  Flame propagation and quenching in iron dust clouds , 2009 .

[39]  F. Millot,et al.  Density and surface tension of liquid iron oxides , 2008 .

[40]  S. Goroshin,et al.  FLAME SPEED IN A BINARY SUSPENSION OF SOLID FUEL PARTICLES , 2000 .

[41]  S. Goroshin,et al.  Effect of the discrete nature of heat sources on flame propagation in particulate suspensions , 1998 .

[42]  M. W. Chase,et al.  NIST-JANAF Thermochemical Tables Fourth Edition , 1998 .

[43]  Robert J. Kee,et al.  A hybrid Newton/time-integration procedure for the solution of steady, laminar, one-dimensional, premixed flames , 1988 .

[44]  A. T. Fromhold Growth rate of low-space-charge oxides on spherical metal particles , 1988 .

[45]  K. Jacobsen The General Assembly of the United Nations , 1978 .

[46]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[47]  W. E. Ranz,et al.  Evaporation from drops , 1952 .

[48]  C. Wagner Beitrag zur Theorie des Anlaufvorgangs , 1933 .

[49]  L. Schiller Uber die Grundlegenden Berechnungen bei der Schwerkraftaufbereitung , 1933 .