Quantum information processing using quasiclassical electromagnetic interactions between qubits and electrical resonators

Electrical resonators are widely used in quantum information processing, by engineering an electromagnetic interaction with qubits based on real or virtual exchange of microwave photons. This interaction relies on strong coupling between the qubits' transition dipole moments and the vacuum fluctuations of the resonator in the same manner as cavity quantum electrodynamics (QED), and has consequently come to be called 'circuit QED' (cQED). Great strides in the control of quantum information have already been made experimentally using this idea. However, the central role played by photon exchange induced by quantum fluctuations in cQED does result in some characteristic limitations. In this paper, we discuss an alternative method for coupling qubits electromagnetically via a resonator, in which no photons are exchanged, and where the resonator need not have strong quantum fluctuations. Instead, the interaction can be viewed in terms of classical, effective 'forces' exerted by the qubits on the resonator, and the resulting resonator dynamics used to produce qubit entanglement are purely classical in nature. We show how this type of interaction is similar to that encountered in the manipulation of atomic ion qubits, and we exploit this analogy to construct two-qubit entangling operations that are largely insensitive to thermal or other noise in the resonator, and to its quality factor. These operations are also extensible to larger numbers of qubits, allowing interactions to be selectively generated among any desired

[1]  Austin G. Fowler,et al.  Cavity grid for scalable quantum computation with superconducting circuits , 2007, 0706.3625.

[2]  K. Likharev Single-electron transistors: Electrostatic analogs of the DC SQUIDS , 1987 .

[3]  I. Chuang,et al.  Cavity QED in a molecular ion trap , 2009, 0903.3552.

[4]  G. Kurizki,et al.  Reversible state transfer between superconducting qubits and atomic ensembles , 2009, 0902.0881.

[5]  Y. Makhlin,et al.  Stability of longitudinal coupling for Josephson charge qubits , 2007, cond-mat/0701499.

[6]  Sae Woo Nam,et al.  Superconducting a-WxSi1−x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm , 2011 .

[7]  J M Gambetta,et al.  Measurement-induced qubit state mixing in circuit QED from up-converted dephasing noise. , 2012, Physical review letters.

[8]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[9]  M. Lukin,et al.  Capacitive coupling of atomic systems to mesoscopic conductors. , 2003, Physical review letters.

[10]  J Casanova,et al.  Quantum simulation of interacting fermion lattice models in trapped ions. , 2011, Physical review letters.

[11]  John M. Martinis,et al.  Resonator-zero-qubit architecture for superconducting qubits , 2011, 1105.3997.

[12]  J. Cole,et al.  Ultralow-power spectroscopy of a rare-earth spin ensemble using a superconducting resonator , 2011 .

[13]  Miller,et al.  Far-off-resonance optical trapping of atoms. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[14]  O. N. Godisov,et al.  Direct observation of the donor nuclear spin in a near-gap bound exciton transition: 31 P in highly enriched 28 Si* , 2007 .

[15]  C Bruder,et al.  Variable electrostatic transformer: controllable coupling of two charge qubits. , 2003, Physical review letters.

[16]  J. Mooij,et al.  Superconducting nanowires as quantum phase-slip junctions , 2006 .

[17]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[18]  L. Pryadko,et al.  Fault tolerance of quantum low-density parity check codes with sublinear distance scaling , 2013 .

[19]  P. Zoller,et al.  A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators , 2006 .

[20]  E. Lucero,et al.  Planar Superconducting Resonators with Internal Quality Factors above One Million , 2012, 1201.3384.

[21]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[22]  A. D. Boozer,et al.  Trapped atoms in cavity QED: coupling quantized light and matter , 2005 .

[23]  F. Nori,et al.  Superconducting qubits can be coupled and addressed as trapped ions , 2005, cond-mat/0509236.

[24]  S. Yelin,et al.  Cluster-state generation using van der Waals and dipole-dipole interactions in optical lattices , 2011, 1106.0713.

[25]  M. Weides,et al.  Etch induced microwave losses in titanium nitride superconducting resonators , 2012, 1205.3153.

[26]  A. A. Abdumalikov,et al.  Geometric phase and nonadiabatic effects in an electronic harmonic oscillator. , 2011, Physical review letters.

[27]  K. Brown,et al.  100-fold reduction of electric-field noise in an ion trap cleaned with in situ argon-ion-beam bombardment. , 2012, Physical review letters.

[28]  E. Thuneberg,et al.  Vibronic spectroscopy of an artificial molecule. , 2008, Physical review letters.

[29]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[30]  Antonio Corcoles,et al.  Protecting superconducting qubits from radiation , 2011 .

[31]  R. Schoelkopf,et al.  Deterministic protocol for mapping a qubit to coherent state superpositions in a cavity , 2012, 1205.2401.

[32]  L Roschier,et al.  Direct observation of Josephson capacitance. , 2005, Physical review letters.

[33]  Luigi Frunzio,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[34]  L. Benfatto,et al.  Penetration depth and tunneling studies in very thin epitaxial NbN films , 2009, 0911.4181.

[35]  P. Joyez,et al.  Decoherence in a superconducting quantum bit circuit , 2005 .

[36]  A. Yacoby,et al.  Demonstration of Entanglement of Electrostatically Coupled Singlet-Triplet Qubits , 2012, Science.

[37]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[38]  Decoherence of quantum fields: Pointer states and predictability. , 1995, Physical review. D, Particles and fields.

[39]  Mark W. Coffey,et al.  Greenberger-Horne-Zeilinger state protocols for fully connected qubit networks , 2009, 0907.2225.

[40]  F. Nori,et al.  Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems , 2012, 1204.2137.

[41]  Blake R. Johnson,et al.  Simple all-microwave entangling gate for fixed-frequency superconducting qubits. , 2011, Physical review letters.

[42]  M. Weides,et al.  Generation of three-qubit entangled states using superconducting phase qubits , 2010, Nature.

[43]  Michael J. Biercuk,et al.  Optimized dynamical decoupling in a model quantum memory , 2008, Nature.

[44]  L Frunzio,et al.  High-cooperativity coupling of electron-spin ensembles to superconducting cavities. , 2010, Physical review letters.

[45]  J M Gambetta,et al.  Tunable coupling in circuit quantum electrodynamics using a superconducting charge qubit with a V-shaped energy level diagram. , 2011, Physical review letters.

[46]  Andrew Steane,et al.  Fast quantum logic by selective displacement of hot trapped ions , 2003 .

[47]  W. Guichard,et al.  Phase-charge duality in Josephson junction circuits: Role of inertia and effect of microwave irradiation , 2009, 0909.3749.

[48]  Adele E. Schmitz,et al.  Coherent singlet-triplet oscillations in a silicon-based double quantum dot , 2012, Nature.

[49]  A. Gossard,et al.  Effect of exchange interaction on spin dephasing in a double quantum dot. , 2005, Physical review letters.

[50]  A. Kerman Flux–charge duality and topological quantum phase fluctuations in quasi-one-dimensional superconductors , 2012, 1201.1859.

[51]  P. Haljan,et al.  Spin-dependent forces on trapped ions for phase-stable quantum gates and entangled states of spin and motion. , 2004, Physical review letters.

[52]  David P. DiVincenzo,et al.  Fault-tolerant architectures for superconducting qubits , 2009, 0905.4839.

[53]  A. Lupascu,et al.  Selective darkening of degenerate transitions demonstrated with two superconducting quantum bits , 2010, 1008.1294.

[54]  C. Harmans,et al.  Tuning the gap of a superconducting flux qubit. , 2008, Physical review letters.

[55]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[56]  F. Nori,et al.  Natural and artificial atoms for quantum computation , 2010, 1002.1871.

[57]  S. Girvin,et al.  Photon Shot Noise Dephasing in the Strong-Dispersive Limit of Circuit QED , 2012, 1206.1265.

[58]  Yasunobu Nakamura,et al.  Noise correlations in a flux qubit with tunable tunnel coupling , 2011, 1104.5212.

[59]  Eran Ginossar,et al.  Response of the strongly driven Jaynes-Cummings oscillator. , 2010, Physical review letters.

[60]  Andreas Wallraff,et al.  Multimode mediated qubit-qubit coupling and dark-state symmetries in circuit quantum electrodynamics , 2011 .

[61]  Jay M. Gambetta,et al.  Preparation and measurement of three-qubit entanglement in a superconducting circuit , 2010, Nature.

[62]  Klaus Molmer,et al.  Multiparticle Entanglement of Hot Trapped Ions , 1998, quant-ph/9810040.

[63]  Gerard J. Milburn,et al.  Ion Trap Quantum Computing with Warm Ions , 2000 .

[64]  David E. Pritchard,et al.  Atom cooling , trapping , and quantum manipulation , 1999 .

[65]  M. L. W. Thewalt,et al.  Quantum Information Storage for over 180 s Using Donor Spins in a 28Si “Semiconductor Vacuum” , 2012, Science.

[66]  L Frunzio,et al.  ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. , 2005, Physical review letters.

[67]  A. Kerman,et al.  High-fidelity quantum operations on superconducting qubits in the presence of noise. , 2008, Physical review letters.

[68]  C. Guerlin,et al.  Cavity quantum electrodynamics with a Rydberg-blocked atomic ensemble , 2010, 1006.3633.

[69]  A. Kerman Metastable superconducting qubit. , 2009, Physical review letters.

[70]  Alexander B. Zorin,et al.  Theory of the Bloch-wave oscillations in small Josephson junctions , 1985 .

[71]  Franco Nori,et al.  Scalable quantum computing with Josephson charge qubits. , 2002, Physical review letters.

[72]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[73]  A. Lupascu,et al.  Nondestructive readout for a superconducting flux qubit. , 2004, Physical review letters.

[74]  Mika A. Sillanpää,et al.  Coherent quantum state storage and transfer between two phase qubits via a resonant cavity , 2007, Nature.

[75]  Klaus Molmer,et al.  Entanglement and quantum computation with ions in thermal motion , 2000 .

[76]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[77]  T Duty,et al.  Observation of quantum capacitance in the Cooper-pair transistor. , 2005, Physical review letters.

[78]  M. Weides,et al.  Minimal resonator loss for circuit quantum electrodynamics , 2010, 1005.0408.

[79]  S. Ya. Kilin,et al.  Quantum computation using the 13C nuclear spins near the single NV defect center in diamond , 2001 .

[80]  J. Raimond,et al.  Manipulating quantum entanglement with atoms and photons in a cavity , 2001 .

[81]  P. Maurer,et al.  Using Sideband Transitions for Two-Qubit Operations in Superconducting Circuits , 2008, 0812.2678.

[82]  Eric A. Dauler,et al.  Kinetic-inductance-limited reset time of superconducting nanowire photon counters , 2005, physics/0510238.

[83]  Spectral measurement of the thermal excitation of a superconducting qubit , 2009, 0912.1956.

[84]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2013 .

[85]  A. Kadin Duality and fluxonics in superconducting devices , 1990 .

[86]  D. Cory,et al.  Noise spectroscopy through dynamical decoupling with a superconducting flux qubit , 2011 .

[87]  S. Filipp,et al.  Driving Rydberg-Rydberg transitions from a coplanar microwave waveguide. , 2012, Physical review letters.

[88]  Jens Koch,et al.  Controlling the spontaneous emission of a superconducting transmon qubit. , 2008, Physical review letters.

[89]  E. Lucero,et al.  Computing prime factors with a Josephson phase qubit quantum processor , 2012, Nature Physics.

[90]  Seth Lloyd,et al.  Superconducting persistent-current qubit , 1999, cond-mat/9908283.

[91]  A. Kemp,et al.  Coupling superconducting flux qubits at optimal point via dynamic decoupling with the quantum bus , 2008, 0807.1584.

[92]  J. Gambetta,et al.  Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms , 2012, 1202.5533.

[93]  M. Devoret Quantum Fluctuations in Electrical Circuits , 1997 .

[94]  John A Smolin,et al.  Entanglement of two superconducting qubits in a waveguide cavity via monochromatic two-photon excitation. , 2012, Physical review letters.

[95]  S. Ashhab,et al.  Fully connected network of superconducting qubits in a cavity , 2008, 0802.1469.