Lithospheric Structure of the Malawi Rift: Implications for Magma‐Poor Rifting Processes

Our understanding of how magma‐poor rifts accommodate strain remains limited largely due to sparse geophysical observations from these rift systems. To better understand the magma‐poor rifting processes, we investigate the lithospheric structure of the Malawi Rift, a segment of the magma‐poor western branch of the East African Rift System. We analyze Bouguer gravity anomalies from the World Gravity Model 2012 using the two‐dimensional (2‐D) radially averaged power‐density spectrum technique and 2‐D forward modeling to estimate the crustal and lithospheric thickness beneath the rift. We find: (1) relatively thin crust (38–40 km) beneath the northern Malawi Rift segment and relatively thick crust (41–45 km) beneath the central and southern segments; (2) thinner lithosphere beneath the surface expression of the entire rift with the thinnest lithosphere (115–125 km) occurring beneath its northern segment; and (3) an approximately E‐W trending belt of thicker lithosphere (180–210 km) beneath the rift's central segment. We then use the lithospheric structure to constrain three‐dimensional numerical models of lithosphere‐asthenosphere interactions, which indicate ~3‐cm/year asthenospheric upwelling beneath the thinner lithosphere. We interpret that magma‐poor rifting is characterized by coupling of crust‐lithospheric mantle extension beneath the rift's isolated magmatic zones and decoupling in the rift's magma‐poor segments. We propose that coupled extension beneath rift's isolated magmatic zones is assisted by lithospheric weakening due to melts from asthenospheric upwelling whereas decoupled extension beneath rift's magma‐poor segments is assisted by concentration of fluids possibly fed from deeper asthenospheric melt that is yet to breach the surface.

[1]  M. Mayle,et al.  Controls of Basement Fabric on the Linkage of Rift Segments , 2019, Tectonics.

[2]  Stephen S. Gao,et al.  Crustal structure beneath the Malawi and Luangwa Rift Zones and adjacent areas from ambient noise tomography , 2019, Gondwana Research.

[3]  C. Ebinger,et al.  Seismic Evidence for Plume‐ and Craton‐Influenced Upper Mantle Structure Beneath the Northern Malawi Rift and the Rungwe Volcanic Province, East Africa , 2018, Geochemistry, Geophysics, Geosystems.

[4]  M. Abdelsalam,et al.  Lithospheric Controls on the Rifting of the Tanzanian Craton at the Eyasi Basin, Eastern Branch of the East African Rift System , 2018, Tectonics.

[5]  C. Ebinger,et al.  Crustal structure surrounding the northern Malawi rift and beneath the Rungwe Volcanic Province, East Africa , 2018, Geophysical Journal International.

[6]  É. Calais,et al.  Non‐uniform splitting of a single mantle plume by double cratonic roots: Insight into the origin of the central and southern East African Rift System , 2018 .

[7]  P. Chindandali,et al.  Active Deformation of Malawi Rift's North Basin Hinge Zone Modulated by Reactivation of Preexisting Precambrian Shear Zone Fabric , 2018 .

[8]  Estella A. Atekwana,et al.  Imaging Precambrian Lithospheric Structure in Zambia using Electromagnetic Methods , 2018 .

[9]  M. Abdelsalam,et al.  The Influence of the Precambrian Mughese Shear Zone Structures on Strain Accommodation in the Northern Malawi Rift , 2018 .

[10]  C. Ebinger,et al.  Surface-wave imaging of the weakly-extended Malawi Rift from ambient-noise and teleseismic Rayleigh waves from onshore and lake-bottom seismometers , 2017 .

[11]  M. Abdelsalam,et al.  Geophysical imaging of metacratonizaton in the northern edge of the Congo craton in Cameroon , 2017 .

[12]  Stephen S. Gao,et al.  Evolution of the broadly rifted zone in southern Ethiopia through gravitational collapse and extension of dynamic topography , 2017 .

[13]  Wolfgang Bangerth,et al.  High accuracy mantle convection simulation through modern numerical methods , 2012 .

[14]  Stephen S. Gao,et al.  Passive rifting of thick lithosphere in the southern East African Rift: Evidence from mantle transition zone discontinuity topography , 2016 .

[15]  J. O’Donnell,et al.  Thick lithosphere, deep crustal earthquakes and no melt: a triple challenge to understanding extension in the western branch of the East African Rift , 2016 .

[16]  M. Abdelsalam,et al.  Hierarchical segmentation of the Malawi Rift: The influence of inherited lithospheric heterogeneity and kinematics in the evolution of continental rifts , 2015 .

[17]  É. Calais,et al.  Dual continental rift systems generated by plume-lithosphere interaction , 2015 .

[18]  M. Abdelsalam,et al.  The role of pre-existing Precambrian structures in rift evolution: The Albertine and Rhino grabens, Uganda , 2015 .

[19]  M. Abdelsalam,et al.  Thermal perturbations beneath the incipient Okavango Rift Zone, northwest Botswana , 2015 .

[20]  S. Hemming,et al.  The Timing of Early Magmatism and Extension in the Southern East African Rift: Tracking Geochemical Source Variability with 40 Ar/ 39 Ar Geochronology at the Rungwe Volcanic Province, SW Tanzania , 2014 .

[21]  J. Sánchez-Rojas,et al.  Crustal density structure in northwestern South America derived from analysis and 3-D modeling of gravity and seismicity data , 2014 .

[22]  D. S. Stamps,et al.  Current kinematics and dynamics of Africa and the East African Rift System , 2014 .

[23]  D. S. Stamps,et al.  Present‐day kinematics of the East African Rift , 2014 .

[24]  Remko Scharroo,et al.  Generic Mapping Tools: Improved Version Released , 2013 .

[25]  T. Kusky,et al.  Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution , 2013, Journal of African earth sciences.

[26]  Å. Fagereng Fault segmentation, deep rift earthquakes and crustal rheology: Insights from the 2009 Karonga sequence and seismicity in the Rukwa-Malawi rift zone , 2013 .

[27]  J. O’Donnell,et al.  The uppermost mantle shear wave velocity structure of eastern Africa from Rayleigh wave tomography: constraints on rift evolution , 2013 .

[28]  Stephen S. Gao,et al.  Seismic Arrays to Study African Rift Initiation , 2013 .

[29]  G. Hirth,et al.  Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists , 2013 .

[30]  T. Lapen,et al.  Metasomatic control of water contents in the Kaapvaal cratonic mantle , 2012 .

[31]  Martin Kronbichler,et al.  High accuracy mantle convection simulation through modern numerical methods , 2012 .

[32]  Georges Balmino,et al.  Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies , 2012, Journal of Geodesy.

[33]  D. Delvaux,et al.  Geodynamic significance of the TRM segment in the East African Rift (W-Tanzania): Active tectonics and paleostress in the Ufipa plateau and Rukwa basin , 2012 .

[34]  N. K. Pavlis,et al.  The development and evaluation of the Earth Gravitational Model 2008 (EGM2008) , 2012 .

[35]  G. Ernst,et al.  The Rungwe Volcanic Province, Tanzania: a volcanological review , 2012 .

[36]  B. Agarwal,et al.  Crustal structure from gravity signatures in the Iberian Peninsula , 2011 .

[37]  D. Schaff,et al.  Faulting processes during early-stage rifting: seismic and geodetic analysis of the 2009–2010 Northern Malawi earthquake sequence , 2010, Geophysical Journal International.

[38]  C. Lesher,et al.  Compositional trends among Kaapvaal Craton garnet peridotite xenoliths and their effects on seismic velocity and density , 2010 .

[39]  S. Fishwick Surface wave tomography: Imaging of the lithosphere-asthenosphere boundary beneath central and southern Africa? , 2010 .

[40]  J. Afonso,et al.  The structure and evolution of the lithosphere-asthenosphere boundary beneath the Atlantic-Mediterranean Transition Region , 2010 .

[41]  James Jackson,et al.  Breaking up the hanging wall of a rift‐border fault: The 2009 Karonga earthquakes, Malawi , 2010 .

[42]  D. S. Stamps,et al.  Lithospheric buoyancy forces in Africa from a thin sheet approach , 2010 .

[43]  H. Schmeling Dynamic models of continental rifting with melt generation , 2010 .

[44]  H. Thybo,et al.  Magma-compensated crustal thinning in continental rift zones , 2009, Nature.

[45]  I. Henderson,et al.  Growth and collapse of a deeply eroded orogen: Insights from structural, geophysical, and geochronological constraints on the Pan‐African evolution of NE Mozambique , 2008 .

[46]  D. S. Stamps,et al.  A kinematic model for the East African Rift , 2008 .

[47]  J. Rolet,et al.  Rift propagation at craton margin.: Distribution of faulting and volcanism in the North Tanzanian Divergence (East Africa) during Neogene times , 2008 .

[48]  G. Corti,et al.  Tectonic inheritance and continental rift architecture: Numerical and analogue models of the East African Rift system , 2007 .

[49]  K. Mickus,et al.  Gravity analysis of the main Ethiopian rift , 2007 .

[50]  A. B. Kampunzu,et al.  The Mesoproterozoic Irumide belt of Zambia , 2006 .

[51]  D. Gómez-Ortiz,et al.  Crustal density structure in the Spanish Central System derived from gravity data analysis (Central Spain) , 2005 .

[52]  C. Ebinger Continental break‐up: The East African perspective , 2005 .

[53]  S. Semken,et al.  Lithospheric structure of the Rio Grande rift , 2005, Nature.

[54]  C. Ebinger,et al.  Magma-assisted rifting in Ethiopia , 2005, Nature.

[55]  C. Morley,et al.  Activation of rift oblique and rift parallel pre-existing fabrics during extension and their effect on deformation style: examples from the rifts of Thailand , 2004 .

[56]  S. Bowring,et al.  Tectonic evolution of the Zambezi orogenic belt: geochronological, structural, and petrological constraints from northern Zimbabwe , 2003 .

[57]  J. Gaspar-Escribano,et al.  Mechanical (de-)coupling of the lithosphere in the Valencia Trough (NW Mediterranean): what does it mean? , 2003 .

[58]  U. Ring,et al.  Shear-zone patterns and eclogite-facies metamorphism in the Mozambique belt of northern Malawi, east-central Africa: implications for the assembly of Gondwana , 2002 .

[59]  G. R. Keller,et al.  An integrated geophysical analysis of the upper crust of the southern Kenya rift , 2001 .

[60]  David E. James,et al.  Crustal structure beneath southern Africa and its implications for the formation and evolution of the Kaapvaal and Zimbabwe cratons , 2001 .

[61]  R. Sacchi,et al.  Pan-African reactivation of the Lurio segment of the Kibaran Belt system: a reappraisal from recent age determinations in northern Mozambique , 2000 .

[62]  J. Soto,et al.  Lithospheric Structure Beneath the Alboran Basin: Results from 3D Gravity Modeling and Tectonic Relevance , 2000 .

[63]  C. Scholz,et al.  Growth of a normal fault system: observations from the Lake Malawi basin of the east African rift , 2000 .

[64]  R. Mahatsente,et al.  Crustal structure of the Main Ethiopian Rift from gravity data: 3-dimensional modeling , 1999 .

[65]  P. Naidu,et al.  Digital analysis of aeromagnetic maps: Detection of a fault , 1999 .

[66]  G. Bertotti,et al.  The influence of a stratified rheology on the flexural response of the lithosphere to (un)loading by extensional faulting. , 1998 .

[67]  J. Hopper,et al.  Styles of extensional decoupling , 1998 .

[68]  D. L. Anderson,et al.  Edge-driven convection , 1998 .

[69]  J. Jackson,et al.  The Bilila‐Mtakataka fault in Malaŵi: An active, 100‐km long, normal fault segment in thick seismogenic crust , 1997 .

[70]  B. Evans,et al.  Strength of the lithosphere: Constraints imposed by laboratory experiments , 1995 .

[71]  R. Russo,et al.  Spectral analysis of gravity anomalies and the architecture of tectonic wedging, NE Venezuela and Trinidad , 1994 .

[72]  U. Ring The influence of preexisting structure on the evolution of the Cenozoic Malawi rift (East African rift system) , 1994 .

[73]  T. Wilson,et al.  Geologic evolution of the neoproterozoic Zambezi orogenic belt in Zambia , 1994 .

[74]  C. Ebinger,et al.  Tectonic controls on rift basin morphology: Evolution of the northern Malawi (Nyasa) Rift , 1993 .

[75]  J. Jackson,et al.  THE Malaŵi Earthquake of March 10, 1989: DEep faulting within the East African Rift System , 1993 .

[76]  S. Cloetingh,et al.  Pliocene uplift of the eastern Iberian margin: Inferences from quantitative modelling of the Valencia Trough , 1993 .

[77]  Patrick Wu,et al.  Rheology of the Upper Mantle: A Synthesis , 1993, Science.

[78]  W. R. Buck,et al.  Modes of continental lithospheric extension , 1991 .

[79]  C. Castaing Post-Pan-African tectonic evolution of South Malawi in relation to the Karroo and recent East African rift systems , 1991 .

[80]  T. Reston The lower crust and the extension of the continental lithosphere: Kinematic analysis of Birps Deep Seismic Data , 1990 .

[81]  C. Ebinger,et al.  Chronology of volcanism and rift basin propagation - Rungwe volcanic province, East Africa , 1989 .

[82]  C. Okereke,et al.  A regional gravity study of the West African rift system in Nigeria and Cameroon and its tectonic interpretation , 1987 .

[83]  C. Ebinger,et al.  Tectonic model of the Malaŵi rift, Africa , 1987 .

[84]  A. Woolley,et al.  The mafic mineralogy of the peralkaline syenites and granites of the Mulanje complex, Malawi , 1986, Mineralogical Magazine.

[85]  A. Giacomo Petrochemistry, tectonic evolution and metasomatic mineralisations of Mozambique belt granulites from S Malawi and Tete (Mozambique) , 1984 .

[86]  Ian Briggs Machine contouring using minimum curvature , 1974 .

[87]  M. F. Ashby,et al.  On the rheology of the upper mantle , 1973 .

[88]  R. Mcconnell Geological Development of the Rift System of Eastern Africa , 1972 .

[89]  A. Spector,et al.  STATISTICAL MODELS FOR INTERPRETING AEROMAGNETIC DATA , 1970 .

[90]  C. Foss Magnetic Data Enhancements and Depth Estimation , 2021, Encyclopedia of Solid Earth Geophysics.

[91]  Wolfgang Bangerth,et al.  ASPECT: Advanced Solver for Problems in Earth's ConvecTion, User Manual , 2017 .

[92]  N. K. Pavlis,et al.  The development and evaluation of the Earth Gravitational Model 2008 ( EGM 2008 ) , 2012 .

[93]  M. Lehtonen,et al.  THE TETE-CHIPATA BELT : A NEW MULTIPLE TERRANE ELEMENT FROM WESTERN MOZAMBIQUE AND SOUTHERN ZAMBIA , 2008 .

[94]  W. Buck The role of magma in the development of the Afro-Arabian Rift System , 2006, Geological Society, London, Special Publications.

[95]  M. Handy,et al.  Decoupling and its relation to strain partitioning in continental lithosphere: insight from the Periadriatic fault system (European Alps) , 2005, Geological Society, London, Special Publications.

[96]  J. Wijk Role of weak zone orientation in continental lithosphere extension , 2005 .

[97]  Vijay P. Dimri,et al.  DEPTH ESTIMATION FROM THE SCALING POWER SPECTRUM OF POTENTIAL FIELDS , 1996 .

[98]  U. Ring,et al.  Sedimentology of the Malawi Rift: Facies and stratigraphy of the Chiwondo Beds, northern Malawi , 1995 .

[99]  B. Rosendahl,et al.  The seismic stratigraphy of Lake Malawi, Africa: implications for interpreting geological processes in lacustrine rifts , 1990 .

[100]  J. Karson,et al.  Structure and kinematics of the Livingstone Mountains border fault zone, Nyasa (Malawi) Rift, southwestern Tanzania , 1989 .

[101]  J. Chorowicz,et al.  Rift basin evolution in Africa: the influence of reactivated steep basement shear zones , 1989, Geological Society, London, Special Publications.

[102]  B. Rosendahl,et al.  Architecture of the Lake Malawi Rift, East Africa , 1989 .

[103]  K. Dimitriadis,et al.  A spectral approach to moho depths estimation from gravity measurements in Epirus (NW Greece). , 1988 .

[104]  Giorgio Ranalli,et al.  Rheology of the earth , 1987 .

[105]  M. Landisman,et al.  Rapid gravity computations for two‐dimensional bodies with application to the Mendocino submarine fracture zone , 1959 .