Predicting Successful Memes Using Network and Community Structure

We investigate the predictability of successful memes using their early spreading patterns in the underlying social networks. We propose and analyze a comprehensive set of features and develop an accurate model to predict future popularity of a meme given its early spreading patterns. Our paper provides the first comprehensive comparison of existing predictive frameworks. We categorize our features into three groups: influence of early adopters, community concentration, and characteristics of adoption time series. We find that features based on community structure are the most powerful predictors of future success. We also find that early popularity of a meme is not a good predictor of its future popularity, contrary to common belief. Our methods outperform other approaches, particularly in the task of detecting very popular or unpopular memes.

[1]  Manuela M. Veloso,et al.  Non-Parametric Time Series Classification , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[2]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Sune Lehmann,et al.  Link communities reveal multiscale complexity in networks , 2009, Nature.

[4]  M. McPherson,et al.  Birds of a Feather: Homophily in Social Networks , 2001 .

[5]  Rossano Schifanella,et al.  The role of information diffusion in the evolution of social networks , 2013, KDD.

[6]  Lada A. Adamic,et al.  Social influence and the diffusion of user-created content , 2009, EC '09.

[7]  Duncan J Watts,et al.  A simple model of global cascades on random networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[9]  A-L Barabási,et al.  Structure and tie strengths in mobile communication networks , 2006, Proceedings of the National Academy of Sciences.

[10]  Jon Kleinberg,et al.  Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter , 2011, WWW.

[11]  Lei Yang,et al.  We know what @you #tag: does the dual role affect hashtag adoption? , 2012, WWW.

[12]  Gözde Özbal,et al.  Exploring Text Virality in Social Networks , 2011, ICWSM.

[13]  Krishna P. Gummadi,et al.  Measuring User Influence in Twitter: The Million Follower Fallacy , 2010, ICWSM.

[14]  James McNames,et al.  A Nearest Trajectory Strategy for Time Series Prediction , 2000 .

[15]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[16]  Fang Wu,et al.  Novelty and collective attention , 2007, Proceedings of the National Academy of Sciences.

[17]  Damon Centola An Experimental Study of Homophily in the Adoption of Health Behavior , 2011, Science.

[18]  Jussara M. Almeida,et al.  Using early view patterns to predict the popularity of youtube videos , 2013, WSDM.

[19]  Dylan Walker,et al.  Creating Social Contagion Through Viral Product Design: A Randomized Trial of Peer Influence in Networks , 2010, ICIS.

[20]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[21]  Lada A. Adamic,et al.  Computational Social Science , 2009, Science.

[22]  Ciro Cattuto,et al.  Dynamical classes of collective attention in twitter , 2011, WWW.

[23]  M. Macy,et al.  Complex Contagions and the Weakness of Long Ties1 , 2007, American Journal of Sociology.

[24]  Bernardo A. Huberman,et al.  Predicting the popularity of online content , 2008, Commun. ACM.

[25]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[26]  Daniel M. Romero,et al.  Influence and passivity in social media , 2010, ECML/PKDD.

[27]  Jure Leskovec,et al.  Patterns of temporal variation in online media , 2011, WSDM '11.

[28]  Hila Becker,et al.  Beyond Trending Topics: Real-World Event Identification on Twitter , 2011, ICWSM.

[29]  Jure Leskovec,et al.  The dynamics of viral marketing , 2005, EC '06.

[30]  Brian D. Davison,et al.  Predicting popular messages in Twitter , 2011, WWW.

[31]  Kristina Lerman,et al.  Information Contagion: An Empirical Study of the Spread of News on Digg and Twitter Social Networks , 2010, ICWSM.

[32]  Filippo Menczer,et al.  Virality Prediction and Community Structure in Social Networks , 2013, Scientific Reports.

[33]  Jimeng Sun,et al.  Social influence analysis in large-scale networks , 2009, KDD.

[34]  Filippo Menczer,et al.  The Digital Evolution of Occupy Wall Street , 2013, PloS one.

[35]  A. Vespignani,et al.  Competition among memes in a world with limited attention , 2012, Scientific Reports.

[36]  Mario Cataldi,et al.  Emerging topic detection on Twitter based on temporal and social terms evaluation , 2010, MDMKDD '10.

[37]  Chenhao Tan,et al.  On the Interplay between Social and Topical Structure , 2011, ICWSM.

[38]  WILLIAM GOFFMAN,et al.  Generalization of Epidemic Theory: An Application to the Transmission of Ideas , 1964, Nature.

[39]  Matthew J. Salganik,et al.  Experimental Study of Inequality and Unpredictability in an Artificial Cultural Market , 2006, Science.

[40]  Peter H. Reingen,et al.  Social Ties and Word-of-Mouth Referral Behavior , 1987 .

[41]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[42]  Duncan J. Watts,et al.  Everyone's an influencer: quantifying influence on twitter , 2011, WSDM '11.

[43]  Gao Cong,et al.  On predicting the popularity of newly emerging hashtags in Twitter , 2013, J. Assoc. Inf. Sci. Technol..

[44]  Bernardo A. Huberman,et al.  Trends in Social Media: Persistence and Decay , 2011, ICWSM.

[45]  Qi He,et al.  TwitterRank: finding topic-sensitive influential twitterers , 2010, WSDM '10.

[46]  Richard Colbaugh,et al.  Early warning analysis for social diffusion events , 2010, 2010 IEEE International Conference on Intelligence and Security Informatics.

[47]  Mark S. Granovetter Threshold Models of Collective Behavior , 1978, American Journal of Sociology.

[48]  Robert L. Goldstone,et al.  Propagation of innovations in networked groups. , 2008, Journal of experimental psychology. General.

[49]  A. Vespignani Predicting the Behavior of Techno-Social Systems , 2009, Science.

[50]  Ari Rappoport,et al.  What's in a hashtag?: content based prediction of the spread of ideas in microblogging communities , 2012, WSDM '12.

[51]  Lev Muchnik,et al.  Identifying influential spreaders in complex networks , 2010, 1001.5285.

[52]  Bernardo A. Huberman,et al.  The Pulse of News in Social Media: Forecasting Popularity , 2012, ICWSM.

[53]  Martin Rosvall,et al.  Maps of random walks on complex networks reveal community structure , 2007, Proceedings of the National Academy of Sciences.

[54]  Chun Liu,et al.  Social Influence Bias : A Randomized Experiment , 2014 .

[55]  Padhraic Smyth,et al.  Trajectory clustering with mixtures of regression models , 1999, KDD '99.

[56]  Damon Centola,et al.  The Spread of Behavior in an Online Social Network Experiment , 2010, Science.

[57]  Katherine L. Milkman,et al.  What Makes Online Content Viral? , 2012 .

[58]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[59]  Jure Leskovec,et al.  Can cascades be predicted? , 2014, WWW.

[60]  Tad Hogg,et al.  Using a model of social dynamics to predict popularity of news , 2010, WWW '10.

[61]  Huzefa Rangwala,et al.  Digging Digg: Comment Mining, Popularity Prediction, and Social Network Analysis , 2009, 2009 International Conference on Web Information Systems and Mining.

[62]  Vicenç Gómez,et al.  Description and Prediction of Slashdot Activity , 2007, 2007 Latin American Web Conference (LA-WEB 2007).

[63]  Mark S. Granovetter The Strength of Weak Ties , 1973, American Journal of Sociology.

[64]  Ed H. Chi,et al.  Want to be Retweeted? Large Scale Analytics on Factors Impacting Retweet in Twitter Network , 2010, 2010 IEEE Second International Conference on Social Computing.

[65]  D. Kendall,et al.  Epidemics and Rumours , 1964, Nature.