Towards a New Generation ACO-Based Planner

In this paper a new generation ACO-Based Planner, called ACOPlan 2013, is described. This planner is an enhanced version of ACOPlan, a previous ACO-Based Planner [3], which differs from the former in the search algorithm and in the implementation, now done on top of Downwards. The experimental results, even if are not impressive, are encouraging and confirm that ACO is a suitable method to find near optimal plan for propositional planning problems.

[1]  Ira Pohl,et al.  Joint and LPA*: Combination of Approximation and Search , 1986, AAAI.

[2]  Christian Bessiere,et al.  Constraint Propagation , 2006, Handbook of Constraint Programming.

[3]  Antonio Laganà,et al.  An Efficient Taxonomy Assistant for a Federation of Science Distributed Repositories: A Chemistry Use Case , 2013, ICCSA.

[4]  Malte Helmert,et al.  The Fast Downward Planning System , 2006, J. Artif. Intell. Res..

[5]  Alfredo Milani,et al.  An ACO Approach to Planning , 2009, EvoCOP.

[6]  Alban Grastien,et al.  Diagnosis As Planning: Two Case Studies , 2011, ICAPS 2011.

[7]  Hyun Joong Yoon,et al.  Online scheduling of integrated single-wafer processing tools with temporal constraints , 2005, IEEE Transactions on Semiconductor Manufacturing.

[8]  Mohamed Haouari,et al.  An optimization-based heuristic for the robotic cell problem , 2010, Eur. J. Oper. Res..

[9]  Marc Schoenauer,et al.  Divide-and-Evolve: a Sequential Hybridization Strategy Using Evolutionary Algorithms , 2008, Advances in Metaheuristics for Hard Optimization.

[10]  Patrik Haslum Incremental Lower Bounds for Additive Cost Planning Problems , 2012, ICAPS.

[11]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[12]  Yuehwern Yih,et al.  An algorithm for hoist scheduling problems , 1994 .

[13]  Alfredo Milani,et al.  Community of scientist optimization: An autonomy oriented approach to distributed optimization , 2012, AI Commun..

[14]  Avrim Blum,et al.  Fast Planning Through Planning Graph Analysis , 1995, IJCAI.

[15]  David Taniar,et al.  Computational Science and Its Applications – ICCSA 2013 , 2013, Lecture Notes in Computer Science.

[16]  Marc Schoenauer,et al.  An Evolutionary Metaheuristic Based on State Decomposition for Domain-Independent Satisficing Planning , 2010, ICAPS.

[17]  Martin Müller,et al.  Arvand : the Art of Random Walks , 2011 .

[18]  Alfredo Milani,et al.  Experimental evaluation of pheromone models in ACOPlan , 2011, Annals of Mathematics and Artificial Intelligence.

[19]  Patrik Haslum,et al.  Block-Structured Plan Deordering , 2012, Australasian Conference on Artificial Intelligence.

[20]  Patrik Haslum,et al.  Computing Genome Edit Distances using Domain-Independent Planning , 2011, ICAPS 2011.

[21]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[22]  Zelda B. Zabinsky,et al.  An algorithm for scheduling a chemical processing tank line , 1993 .

[23]  Alan Olsen Randward and Lamar : Randomizing the FF Heuristic , 2011 .

[24]  Andreas C. Nearchou,et al.  Differential evolution for sequencing and scheduling optimization , 2006, J. Heuristics.

[25]  Christian Blum,et al.  Ant colony optimization: Introduction and recent trends , 2005 .

[26]  Jens Gottlieb,et al.  Evolutionary Computation in Combinatorial Optimization , 2006, Lecture Notes in Computer Science.

[27]  M. Helmert,et al.  FD-Autotune: Domain-Specific Configuration using Fast Downward , 2011 .

[28]  Krzysztof Fleszar,et al.  A constraint propagation heuristic for the single-hoist, multiple-products scheduling problem , 2004, Comput. Ind. Eng..

[29]  Jörg Hoffmann,et al.  Local Search Topology in Planning Benchmarks: An Empirical Analysis , 2001, IJCAI.

[30]  Jean-Marie Proth,et al.  Scheduling no-wait production with time windows and flexible processing times , 2001, IEEE Trans. Robotics Autom..

[31]  Christian Bierwirth,et al.  A heuristic scheduling procedure for multi-item hoist production lines , 2007 .

[32]  David Chapman,et al.  Planning for Conjunctive Goals , 1987, Artif. Intell..

[33]  Peter van Zant Microchip fabrication : a practical guide to semiconductor processing , 2004 .

[34]  Dushyant Sharma,et al.  A Very Large-Scale Neighborhood Search Algorithm for the Combined Through and Fleet Assignment Model , 2002 .

[35]  Yaxin Bi,et al.  Combining rough decisions for intelligent text mining using Dempster’s rule , 2006, Artificial Intelligence Review.

[36]  Xin Li,et al.  Try and error-based scheduling algorithm for cluster tools of wafer fabrications with residency time constraints , 2012 .

[37]  Carla Limongelli,et al.  Linear temporal logic as an executable semantics for planning languages , 2007, J. Log. Lang. Inf..

[38]  Tae-Eog Lee,et al.  Scheduling a wet station for wafer cleaning with multiple job flows and multiple wafer-handling robots , 2007 .

[39]  Roman Barták,et al.  On Improving Plan Quality via Local Enhancements , 2012, SOCS.

[40]  Paul Shaw,et al.  Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems , 1998, CP.

[41]  Craig A. Knoblock,et al.  Planning by Rewriting , 2001, J. Artif. Intell. Res..

[42]  Subbarao Kambhampati,et al.  Sapa: A Multi-objective Metric Temporal Planner , 2003, J. Artif. Intell. Res..

[43]  Silvia Richter,et al.  The LAMA Planner: Guiding Cost-Based Anytime Planning with Landmarks , 2010, J. Artif. Intell. Res..

[44]  Tae-Eog Lee,et al.  Schedulability Analysis of Time-Constrained Cluster Tools With Bounded Time Variation by an Extended Petri Net , 2008, IEEE Transactions on Automation Science and Engineering.

[45]  Hector Geffner,et al.  Heuristics for Planning with Action Costs Revisited , 2008, ECAI.

[46]  Martin Müller,et al.  Action Elimination and Plan Neighborhood Graph Search: Two Algorithms for Plan Improvement , 2010, ICAPS.

[47]  Stefan Edelkamp,et al.  Automated Planning: Theory and Practice , 2007, Künstliche Intell..

[48]  Mohamed Haouari,et al.  Exact methods for the robotic cell problem , 2011 .

[49]  Claudio Ruggieri,et al.  Experimental Evaluation of , 2007 .

[50]  Bernhard Nebel,et al.  The FF Planning System: Fast Plan Generation Through Heuristic Search , 2011, J. Artif. Intell. Res..

[51]  Yuanxi Li,et al.  Intelligent Social Media Indexing and Sharing Using an Adaptive Indexing Search Engine , 2012, TIST.

[52]  Wim Nuijten,et al.  Randomized Large Neighborhood Search for Cumulative Scheduling , 2005, ICAPS.

[53]  Sebastian Thrun,et al.  ARA*: Anytime A* with Provable Bounds on Sub-Optimality , 2003, NIPS.

[54]  Alfredo Milani,et al.  Probabilistic Aspect Mining Model for Drug Reviews , 2014, IEEE Transactions on Knowledge and Data Engineering.

[55]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[56]  Bernd Freisleben,et al.  Fitness landscapes and memetic algorithm design , 1999 .

[57]  Carmel Domshlak,et al.  Landmarks, Critical Paths and Abstractions: What's the Difference Anyway? , 2009, ICAPS.

[58]  Ivan Serina,et al.  LPG: A Planner Based on Local Search for Planning Graphs with Action Costs , 2002, AIPS.

[59]  Alfredo Milani,et al.  Ant Search Strategies For Planning Optimization , 2009, ICAPS.