Improves particle filter in sensor fusion for tracking random moving object

Non-linear and non-Gaussian estimation is a challenging problem in multi-sensor fusion. To handle this, particle filter is used to estimate the system state based on information from camera and sonar sensor. The state variables such as position, velocity and acceleration of a random moving object change very quickly and are hard to track. This leads to serious sample impoverishment in particle tracking algorithm. In this paper, a resampling algorithm is presented. Random samples are drawn from the neighbourhoods of previous samples with high weights and the effect of sample impoverishment is reduced. The state space model is augmented with acceleration variables to describe the random movement more accurately.

[1]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[2]  A. Doucet,et al.  Particle filtering for multi-target tracking and sensor management , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[3]  Marimuthu Palaniswami,et al.  Distributed data fusion using support vector machines , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[4]  P. Djurić,et al.  A fast-weighted Bayesian bootstrap filter for nonlinear model state estimation , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[5]  A. D. Marrs Asynchronous multi-sensor tracking in clutter with uncertain sensor locations using Bayesian sequential Monte Carlo methods , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[6]  Andrew Blake,et al.  A Probabilistic Exclusion Principle for Tracking Multiple Objects , 2004, International Journal of Computer Vision.

[7]  David J. Fleet,et al.  Probabilistic Detection and Tracking of Motion Boundaries , 2000, International Journal of Computer Vision.

[8]  Bogdan Kwolek,et al.  Person following and mobile camera localization using particle filters , 2004, Proceedings of the Fourth International Workshop on Robot Motion and Control (IEEE Cat. No.04EX891).

[9]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[10]  Patrick Pérez,et al.  Data fusion for visual tracking with particles , 2004, Proceedings of the IEEE.

[11]  Fredrik Gustafsson,et al.  Particle filters for positioning, navigation, and tracking , 2002, IEEE Trans. Signal Process..

[12]  A. Doucet On sequential Monte Carlo methods for Bayesian filtering , 1998 .

[13]  Helder Araújo,et al.  Simulating pursuit with machine experiments with robots and artificial vision , 1998, IEEE Trans. Robotics Autom..

[14]  Wolfram Burgard,et al.  Monte Carlo Localization: Efficient Position Estimation for Mobile Robots , 1999, AAAI/IAAI.

[15]  M. L. Hernandez Efficient data fusion for multi-sensor management , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[16]  Patrick Pérez,et al.  Sequential Monte Carlo methods for multiple target tracking and data fusion , 2002, IEEE Trans. Signal Process..

[17]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[18]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .

[19]  A. Doucet,et al.  Efficient particle filters for tracking manoeuvring targets in clutter , 1999 .

[20]  Rama Chellappa,et al.  Face recognition from video: a CONDENSATION approach , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[21]  Lars Bretzner,et al.  Hand gesture recognition using multi-scale colour features, hierarchical models and particle filtering , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[22]  P. Pérez,et al.  Tracking multiple objects with particle filtering , 2002 .

[23]  Luke Fletcher,et al.  An adaptive fusion architecture for target tracking , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[24]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[25]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[26]  P. Fearnhead,et al.  Improved particle filter for nonlinear problems , 1999 .

[27]  Robert G. Aykroyd,et al.  Bayesian Estimation for Homogeneous and Inhomogeneous Gaussian Random Fields , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Zhihong Zeng,et al.  Head tracking by active particle filtering , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.