Improves particle filter in sensor fusion for tracking random moving object
暂无分享,去创建一个
[1] Jun S. Liu,et al. Sequential Monte Carlo methods for dynamic systems , 1997 .
[2] A. Doucet,et al. Particle filtering for multi-target tracking and sensor management , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).
[3] Marimuthu Palaniswami,et al. Distributed data fusion using support vector machines , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).
[4] P. Djurić,et al. A fast-weighted Bayesian bootstrap filter for nonlinear model state estimation , 1997, IEEE Transactions on Aerospace and Electronic Systems.
[5] A. D. Marrs. Asynchronous multi-sensor tracking in clutter with uncertain sensor locations using Bayesian sequential Monte Carlo methods , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).
[6] Andrew Blake,et al. A Probabilistic Exclusion Principle for Tracking Multiple Objects , 2004, International Journal of Computer Vision.
[7] David J. Fleet,et al. Probabilistic Detection and Tracking of Motion Boundaries , 2000, International Journal of Computer Vision.
[8] Bogdan Kwolek,et al. Person following and mobile camera localization using particle filters , 2004, Proceedings of the Fourth International Workshop on Robot Motion and Control (IEEE Cat. No.04EX891).
[9] Neil J. Gordon,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..
[10] Patrick Pérez,et al. Data fusion for visual tracking with particles , 2004, Proceedings of the IEEE.
[11] Fredrik Gustafsson,et al. Particle filters for positioning, navigation, and tracking , 2002, IEEE Trans. Signal Process..
[12] A. Doucet. On sequential Monte Carlo methods for Bayesian filtering , 1998 .
[13] Helder Araújo,et al. Simulating pursuit with machine experiments with robots and artificial vision , 1998, IEEE Trans. Robotics Autom..
[14] Wolfram Burgard,et al. Monte Carlo Localization: Efficient Position Estimation for Mobile Robots , 1999, AAAI/IAAI.
[15] M. L. Hernandez. Efficient data fusion for multi-sensor management , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).
[16] Patrick Pérez,et al. Sequential Monte Carlo methods for multiple target tracking and data fusion , 2002, IEEE Trans. Signal Process..
[17] Richard A. Johnson,et al. Applied Multivariate Statistical Analysis , 1983 .
[18] W. Gilks,et al. Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .
[19] A. Doucet,et al. Efficient particle filters for tracking manoeuvring targets in clutter , 1999 .
[20] Rama Chellappa,et al. Face recognition from video: a CONDENSATION approach , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.
[21] Lars Bretzner,et al. Hand gesture recognition using multi-scale colour features, hierarchical models and particle filtering , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.
[22] P. Pérez,et al. Tracking multiple objects with particle filtering , 2002 .
[23] Luke Fletcher,et al. An adaptive fusion architecture for target tracking , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.
[24] Jun S. Liu,et al. Monte Carlo strategies in scientific computing , 2001 .
[25] Simon J. Godsill,et al. On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..
[26] P. Fearnhead,et al. Improved particle filter for nonlinear problems , 1999 .
[27] Robert G. Aykroyd,et al. Bayesian Estimation for Homogeneous and Inhomogeneous Gaussian Random Fields , 1998, IEEE Trans. Pattern Anal. Mach. Intell..
[28] Zhihong Zeng,et al. Head tracking by active particle filtering , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.